タイトル: | 特許公報(B2)_抗体定常領域改変体 |
出願番号: | 2011504893 |
年次: | 2015 |
IPC分類: | C07K 16/00,A61K 39/395 |
井川 智之 前田 敦彦 白岩 宙丈 JP 5717624 特許公報(B2) 20150327 2011504893 20100319 抗体定常領域改変体 中外製薬株式会社 000003311 清水 初志 100102978 春名 雅夫 100102118 山口 裕孝 100160923 刑部 俊 100119507 井上 隆一 100142929 佐藤 利光 100148699 新見 浩一 100128048 小林 智彦 100129506 渡邉 伸一 100130845 大関 雅人 100114340 五十嵐 義弘 100114889 川本 和弥 100121072 井川 智之 前田 敦彦 白岩 宙丈 JP 2009068630 20090319 20150513 C07K 16/00 20060101AFI20150423BHJP A61K 39/395 20060101ALI20150423BHJP JPC07K16/00A61K39/395 Y C07K 16/00 A61K 39/395 CAplus/MEDLINE/EMBASE/BIOSIS(STN) 国際公開第2008/145141(WO,A1) 国際公開第2005/056606(WO,A1) Biochemistry,2009年 3月 2日,48 (17),p.3755-3766,[online] DOI: 10.1021/bi8022174 Analytical Biochemistry,2007年,360,p.75-83 THE JOURNAL OF BIOLOGICAL CHEMISTRY,2007年,282, 3,p.1709-1717 The Journal of Immunology,2006年,176,p.346-356 4 JP2010054769 20100319 WO2010107110 20100923 26 20130312 松浦 安紀子 本発明は、アミノ酸配列が改変された抗体定常領域、および該定常領域を含む抗体に関する。 抗体は血漿中(血中)での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、非特許文献2)。 現在上市されている抗体医薬のほとんどがIgG1サブクラスの抗体である。IgG1タイプの抗体はFcγレセプターに結合可能であり、ADCC活性を発揮することが可能であり、抗ガン抗体医薬の場合は有用であると考えられている。しかし、抗原の生物学的作用を中和することが目的の抗体医薬においてはFc領域のADCC等のエフェクター機能に重要なFcγレセプターへの結合は不要な副作用を惹起する可能性があることから排除することが望ましい(非特許文献3)。さらに、Fcγレセプターは抗原提示細胞に発現していることから、Fcγレセプターに結合する分子は抗原提示されやすくなり、IgG1のFc部分にタンパク質やペプチドを結合することによって免疫原性が増強する(させることが可能である)ことが報告されている(非特許文献4、特許文献1)。またTGN1412のPhaseI臨床試験で見られた重大な副作用の原因の一つとして、抗体のFc部分とFcγレセプターの相互作用が考えられている(非特許文献5)。このように、副作用や免疫原性の点から考えると、抗原の生物学的作用を中和することが目的の抗体医薬においてはFcγレセプターへの結合は好ましくないと考えられる。 Fcγレセプターへの結合を完全に無くすことは出来ないが低下させる方法としては、IgG抗体のサブタイプをIgG1からIgG2あるいはIgG4に変える方法が考えられる(非特許文献6)。Fcγレセプターへの結合を完全に無くす方法としては、人工的な改変をFc領域に導入する方法が報告されている。例えば、抗CD3抗体や抗CD4抗体は抗体のエフェクター機能が副作用を惹起する。そこで、Fc領域のFcγレセプター結合部分に野生型配列には存在しないアミノ酸変異(非特許文献3、7)を導入したFcγレセプター非結合型の抗CD3抗体や抗CD4抗体の臨床試験が現在行われている(非特許文献5、8)。また、IgG1のFcγR結合部位(EUナンバリング:233、234、235、236、327、330、331番目)をIgG2およびIgG4の配列にすることでFcγレセプター非結合型抗体を作製することが可能である(非特許文献9、特許文献2)。しかしながら、これらの分子はいずれも天然には存在しないT-cellエピトープペプチドとなりうる9〜12アミノ酸の新しいペプチド配列が出現しており、免疫原性のリスクが考えられる。このような課題を解決したFcγレセプター非結合型抗体の報告はこれまでにない。 一方、抗体を医薬品として開発するにあたり、そのタンパク質の物性、中でも均一性と安定性は極めて重要である。IgG2のサブタイプは、ヒンジ領域のジスルフィド結合に由来するヘテロジェニティー(heterogeneity;異質性)が報告されている(非特許文献10、非特許文献16、非特許文献17、非特許文献18、特許文献3)。これに由来する目的物質/関連物質のヘテロジェニティーの製造間差を維持しつつ医薬品として大量に製造することは難しい。医薬品として開発する抗体分子は、可能な限り単一物質であることが望まれる。本発明において、ヘテロジェニティーの製造間差とは、たとえば製造ロット間のヘテロジェニティーの相違と理解することができる。製造ロットにおけるヘテロジェニティーは、製造された抗体分子の構造や分子量の多様性を測定することによって定量的に評価することができる。 また、IgG2およびIgG4は酸性条件下での安定性に乏しい。一般にIgGタイプの抗体はプロテインAを用いた精製工程およびウィルス不活化工程において酸性条件下に暴露されることから、IgG2およびIgG4は同工程においては安定性に関して注意が必要であり、医薬品として開発する抗体分子は望ましくは酸性条件下においても安定であったほうがよい。天然型のIgG2およびIgG4、および、IgG2およびIgG4をベースにしたFcγレセプター非結合型抗体(非特許文献6、7、特許文献2)においては、これらの課題があり、医薬品として開発する上では解決されることが望まれる。 IgG1タイプの抗体は酸性条件下で比較的安定であり、ヒンジ領域のジスルフィド結合に由来するヘテロジェニティーも少ないが、製剤保存中にヒンジ領域のペプチド結合が非酵素的に溶液中で分解が進行し、不純物としてFab断片が生成することが報告されている(非特許文献11)。医薬品として開発するには不純物の生成は解決されることが望ましい。 また、抗体のC末端配列のヘテロジェニティーとして、C末端アミノ酸のリジン残基の欠損、および、C末端の2アミノ酸のグリシン、リジンの欠損によるC末端アミノ基のアミド化が報告されており(非特許文献12)、医薬品として開発する上にはこれらのヘテロジェニティーは存在しないことが望ましい。 このように抗原を中和することが目的の抗体医薬の定常領域は、これらの課題を全て解決した定常領域配列が望ましいが、これらの条件を全て満たす定常領域の報告はこれまでにない。 また抗体医薬の投与形態については、慢性的な自己免疫疾患などの場合は皮下投与製剤が望ましいとされている。持続的な治療効果を発揮できるよう抗体の血漿中半減期を長くすることで投与タンパク量を少なくし、高濃度製剤が可能な程度に高い安定性を付与することによって、長い投与間隔での皮下投与を可能にし、低コスト且つ利便性の高い抗体医薬を提供することができると考えられる。 一般的に皮下投与製剤は高濃度製剤である必要があるのに対して、IgGタイプの抗体製剤の場合、安定性等の点から一般的には100mg/mL程度の製剤が限度であると考えられており(非特許文献13)、高濃度での安定性の確保が課題であった。しかしながら、これまでに定常領域にアミノ酸置換を導入することによって高濃度におけるIgGの安定性を改善させた報告はない。抗体の血漿中半減期を長くする方法として、定常領域のアミノ酸置換が報告されている(非特許文献14、非特許文献15)が、免疫原性リスクの観点から定常領域に天然に存在しない配列を導入することは好ましくない。 このように抗原を中和することが目的の抗体医薬の定常領域は、これらの課題を全て解決した定常領域配列が望ましいが、これらの条件を満たす定常領域の報告はこれまでにない。従って、これらの課題を改善させた抗体の定常領域が望まれていた。 尚、本出願の発明に関連する先行技術文献情報を以下に示す。US 20050261229A1WO 99/58572US 2006/0194280Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nature Biotechnology 23, 1073 - 1078 (2005)Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur J Pharm Biopharm. 2005 Apr;59(3):389-96.Reddy MP, Kinney CA, Chaikin MA, Payne A, Fishman-Lobell J, Tsui P, Dal Monte PR, Doyle ML, Brigham-Burke MR, Anderson D, Reff M, Newman R, Hanna N, Sweet RW, Truneh A. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol. 2000 Feb 15;164(4):1925-33.Guyre PM, Graziano RF, Goldstein J, Wallace PK, Morganelli PM, Wardwell K, Howell AL. Increased potency of Fc-receptor-targeted antigens. Cancer Immunol Immunother. 1997 Nov-Dec;45(3-4):146-8.Strand V, Kimberly R, Isaacs JD. Biologic therapies in rheumatology: lessons learned, future directions. Nat Rev Drug Discov. 2007 Jan;6(1):75-92.Gessner JE, Heiken H, Tamm A, Schmidt RE. The IgG Fc receptor family. Ann Hematol. 1998 Jun;76(6):231-48.Cole MS, Anasetti C, Tso JY. Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells. J Immunol. 1997 Oct 1;159(7):3613-21.Chau LA, Tso JY, Melrose J, Madrenas J. HuM291(Nuvion), a humanized Fc receptor-nonbinding antibody against CD3, anergizes peripheral blood T cells as partial agonist of the T cell receptor.Transplantation. 2001 Apr 15;71(7):941-50.Armour KL, Clark MR, Hadley AG, Williamson LM., Recombinant human IgG molecules lacking Fcgamma receptor I binding and monocyte triggering activities. Eur J Immunol. 1999 Aug;29(8):2613-24.Chu GC, Chelius D, Xiao G, Khor HK, Coulibaly S, Bondarenko PV. Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers Under Elevated Temperatures. Pharm Res. 2007 Mar 24; 24(6):1145-56A.J. Cordoba, B.J. Shyong, D. Breen, R.J. Harris, Nonenzymatic hinge region fragmentation of antibodies in solution, J. Chromatogr., B, Anal. Technol. Biomed. Life Sci. 818 (2005) 115-121.Johnson KA, Paisley-Flango K, Tangarone BS, Porter TJ, Rouse JC. Cation exchange-C and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Anal Biochem. 2007 Jan 1;360(1):75-83.Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations.J Pharm Sci. 2004 Jun;93(6):1390-402.Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N., An engineered human IgG1 antibody with longer serum half-life., J Immunol. 2006 Jan 1;176(1):346-56.Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Increasing the serum persistence of an IgG fragment by random mutagenesis., Nat Biotechnol. 1997 Jul;15(7):637-40.Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A., Human IgG2 antibodies display disulfide-mediated structural isoforms., J Biol Chem. 2008 Jun 6;283(23):16194-205.Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, Plant M, Henkle B, Li Y, Deechongkit S, Varnum B, Wypych J, Balland A, Bondarenko PV., Structural and functional characterization of disulfide isoforms of the human IgG2 subclass., J Biol Chem. 2008 Jun 6;283(23):16206-15.Martinez T, Guo A, Allen MJ, Han M, Pace D, Jones J, Gillespie R, Ketchem RR, Zhang Y, Balland A., Disulfide connectivity of human immunoglobulin G2 structural isoforms., Biochemistry. 2008 Jul 15;47(28):7496-508 本発明はこのような状況に鑑みて為されたものである。より具体的には、医薬品として望ましい性状を抗体に付与することができる定常領域、並びに当該定常領域と可変領域とを含む抗体を提供することが、本発明の課題である。 本発明者らは、抗体の定常領域のアミノ酸配列を改変することで、物性(安定性および均一性)、免疫原性、安全性、且つ、薬物動態が改善された抗体定常領域の創製に向けて、鋭意研究を行った。その結果、本発明者らは、抗体のヒンジ領域のジスルフィドに由来するヘテロジェニティー、H鎖C末端に由来するヘテロジェニティー、および安定性が改善された抗体定常領域の作製に成功した。 本発明は、抗体の定常領域のアミノ酸配列の改変により、より優れた安全性・免疫原性リスク・物性(安定性、均一性)を有し、より優れた薬物動態を有する抗体定常領域、該抗体定常領域を含む抗体、該抗体を含む医薬組成物、並びに、それらの製造方法に関する。より具体的には、下記〔1〕〜〔7〕を提供する。〔1〕配列番号:8(IgG2定常領域)のアミノ酸配列において、102番目(EUナンバリング219番目)のCysおよび103番目(EUナンバリング220番目)のCysが他のアミノ酸であるアミノ酸配列を有する抗体定常領域。〔2〕147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnがさらに他のアミノ酸である〔1〕に記載の抗体定常領域。〔3〕102番目のCysおよび103番目のCysがSerであることを特徴とする〔1〕に記載の抗体定常領域。〔4〕147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluであることを特徴とする〔2〕に記載の抗体定常領域。〔5〕325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する〔1〕から〔4〕のいずれかに記載の抗体定常領域。〔6〕以下の(1)〜(5)のいずれかに記載の定常領域を有する抗体;(1)配列番号:8(IgG2定常領域)のアミノ酸配列において、102番目(EUナンバリング219番目)のCysおよび103番目(EUナンバリング220番目)のCysが他のアミノ酸であるアミノ酸配列を有する抗体定常領域;(2)102番目のCysおよび103番目のCysがSerであること(1)に記載の抗体定常領域;(3)147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnがさらに他のアミノ酸である(1)または(2)に記載の抗体定常領域;(4)147番目のHisがGln、234番目のArgがGln、そして298番目のGlnがGluである(3)に記載の抗体定常領域;および(5)325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する(1)から(4)のいずれかに記載の抗体定常領域。〔7〕〔6〕に記載の抗体を含む医薬組成物。 本発明によって、抗体に医薬品製剤として望ましい性状を付与することができる定量領域が提供された。本発明の定常領域は、そのアミノ酸配列の改変によって、抗体の次のような性状を医薬品製剤に好適な状態に改善することができる。*抗体のヘテロジェニティーの低下: あるアミノ酸配列をコードするDNAを発現させることによって得られるポリペプチドは、理論上は同じアミノ酸配列からなる均質なポリペプチド分子となるはずである。しかし抗体をコードするDNAを適当な宿主で発現させた場合、実際には、種々の要因によって構造の異なる異質なポリペプチドが生成することがある。抗体の製造においては、多くの異質なポリペプチドからなる抗体集団は、ヘテロジェニティーが高いと言うことができる。本発明の定常領域は、ヘテロジェニティーの原因がアミノ酸配列の改変によって除かれている。したがって、本発明の定常領域で抗体を構成することによって、ヘテロジェニティーの低い抗体を製造することができる。すなわち、抗体の重鎖定常領域に本発明によって提供された改変を導入することによって、抗体の均質性を高く維持することができる。抗体のヘテロジェニティーを低く抑えるとは、ヘテロジェニティーを改善することを意味し、医薬品の品質の維持において重要な課題である。したがって、本発明の定常領域は、抗体を含む医薬品の品質の維持に貢献する。*薬物動態の向上: 本発明は、好ましい態様において、抗体の薬物動態の向上に貢献する。具体的には、本発明における抗体の定常領域に、特定のアミノ酸残基の改変を加えたとき、当該定常領域で構成された抗体の血中濃度は、アミノ酸配列を改変していないものと比較して長い時間にわたって維持される。血中濃度をできるだけ長期間維持することは、抗体を医薬品として投与するときに、より少量の抗体で長期にわたって治療効果を維持できることを意味する。あるいは、抗体の投与間隔をより広くして、投与回数を少なくできる。抗体IL6R H0-IgG1/L0-k0、IL6R H0-IgG1ΔK/L0-k0、およびIL6R H0-IgG1ΔGK/L0-k0を陽イオン交換クロマトグラフィーによりC末端に由来するヘテロジェニティーを評価した結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。IL6R H0-IgG1/L0-k0とIL6R H0-IgG2/L0-k0を陽イオン交換クロマトグラフィーによりジスルフィド結合に由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。IgGタイプ抗体とそのヒンジ領域周辺構造(H鎖、L鎖の配置とそれらの間のジスルフィド結合)の詳細を示した図である(詳細図はIgG1-k0の図である)。定常領域IgG1-k0とIgG2-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。IgG2-k0において考えられる様々なジスルフィド結合パターンを太線で示した。定常領域SC-k0とCS-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。SC-k0とCS-k0において考えられる様々なジスルフィド結合パターンを太線で示した。定常領域M82-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。抗体IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、およびIL6R H0-M82/L0-k0について、陽イオン交換クロマトグラフィーによりジスルフィド結合の掛け違いに由来するヘテロジェニティーを評価した結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。ヒトFcRnトランスジェニックマウスに抗体を1mg/kgで投与したときの抗体の血漿中濃度推移を示した図である。図中、縦軸は抗体の血漿中濃度(μg/mL)、横軸は投与後の経過時間(日)である。投与された抗体は、IL6R H0-IgG1/L0-k0(◆;定常領域を改変していない抗体)、およびIL6R H0-M82/L0-k0(◇;定常領域が改変された抗体)である。定常領域M82-k0とIgG4-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。 本発明は、アミノ酸配列が改変された抗体定常領域、該定常領域を含む抗体、該抗体を含む医薬組成物、ならびに、それらの製造方法を提供する。 本発明において抗体の定常領域とはIgG1、IgG2、IgG4タイプの定常領域のことを意味する。抗体定常領域は好ましくはヒト抗体定常領域であり、特にIgG2定常領域が好ましい。以下のように、ヒトIgG1定常領域、ヒトIgG2定常領域およびヒトIgG4定常領域のアミノ酸配列は公知である。 ヒトIgG1定常領域:配列番号:7 ヒトIgG2定常領域:配列番号:8 ヒトIgG4定常領域:配列番号:9 本発明のヒトIgG1, IgG2, IgG4定常領域としては、遺伝子多形による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。 また、本発明の抗体定常領域は、本発明に基づいて導入されたアミノ酸配列の改変(modification)に加え、更に付加的な改変を含むことができる。付加的な改変は、たとえば、アミノ酸の置換、欠失、あるいは修飾のいずれか、あるいはそれらの組み合わせから選択することができる。具体的には、そのアミノ酸配列に次のような改変を含む定常領域は、いずれも本発明に含まれる。 *配列番号:8(ヒトIgG2定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。 *改変された配列番号:8(ヒトIgG2定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。 *配列番号:8(ヒトIgG2定常領域)のアミノ酸配列に対して本発明に基づく改変を導入し、更に付加的な改変も導入する。 本発明のアミノ酸の修飾には、翻訳後修飾が含まれる。具体的な翻訳後修飾として、糖鎖の付加あるいは欠失を示すことができる。たとえば、配列番号:8に記載のアミノ酸配列をからなるIgG2定常領域において、EUナンバリングの297番目のアミノ酸残基は、糖鎖で修飾されたものであることができる。修飾される糖鎖構造は限定されない。一般的に、真核細胞で発現される抗体は、定常領域に糖鎖修飾を含む。したがって、以下のような細胞で発現される抗体は、通常、何らかの糖鎖で修飾される。 哺乳動物の抗体産生細胞 抗体をコードするDNAを含む発現ベクターで形質転換された真核細胞 ここに示した真核細胞には、酵母や動物細胞が含まれる。たとえばCHO細胞やHEK293H細胞は、抗体をコードするDNAを含む発現ベクターで形質転換するための代表的な動物細胞である。他方、当該位置に糖鎖修飾が無いものも本発明の定常領域に含まれる。定常領域が糖鎖で修飾されていない抗体は、抗体をコードする遺伝子を大腸菌などの原核細胞で発現させて得ることができる。<アミノ酸改変IgG2> 本発明は酸性での安定性が改善されたIgG2定常領域を提供する。 より具体的には、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、276番目(EUナンバリングの397番目)のMetがMet以外のアミノ酸残基に置換されたIgG2定常領域を提供する。置換後のアミノ酸残基はMet以外の任意のアミノ酸残基とすることができる。本発明において、好ましいアミノ酸残基は、Valである。配列番号:8に記載のアミノ酸配列において276番目(EUナンバリングの397番目)のMetが他のアミノ酸であることにより、抗体の酸性条件下での安定性を向上させることが可能である。 本発明により提供される酸性での安定性が改善された定常領域は少なくとも上述のアミノ酸置換が行われていればよく、同時に他のアミノ酸の置換、欠失、付加および/または挿入などがおこなわれていてもよい。 さらに本発明は、ヒンジ領域のヘテロジェニティーが改善された定常領域を提供する。 より具体的には配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、102番目(EUナンバリング219番目)のCysおよび103番目(EUナンバリングの220番目)のCysが他のアミノ酸であるIgG2定常領域を提供する。他のアミノ酸は特に限定されないが、102番目(EUナンバリング219番目)のCysおよび103番目(EUナンバリングの220番目)のCysともにSerであることが好ましい。 これらの置換を行うことにより、IgG2のヒンジ領域に由来するヘテロジェニティーを低減することが可能である。 本発明により提供されるヘテロジェニティーが改善された定常領域は少なくとも上述のアミノ酸置換が行われていればよく、同時に他のアミノ酸の置換、欠失、付加および/または挿入などがおこなわれていてもよい。 さらに本発明はFcγレセプターへの結合活性が低減した定常領域を提供する。 より具体的には、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、209番目(EU330)のAlaがSer、210番目(EU331)のProがSer、および/または218番目(EU339)のThrがAlaである定常領域を提供する。209番目(EU330)のAla、210番目(EU331)のProの置換によりFcγレセプターへの結合を低下させることが可能であることはすでに報告されているが(Eur J Immunol. 1999 Aug;29(8):2613-24.)、この改変ではT-cellエピトープになりうる非ヒト由来のペプチドが出現するため、免疫原性リスクの点からは好ましくない。そこで、218番目(EU339)のThrのAlaへの置換を同時に行うことにより、T-cellエピトープになりうる9〜12アミノ酸としてはヒト由来のペプチドのみを用いたままIgG2のFcγレセプターへの結合を低下させることが可能である。 本発明の定常領域は、上述の3箇所のアミノ酸置換のうち少なくとも1箇所のアミノ酸が他のアミノ酸であればよいが、好ましくは上述の3箇所全てのアミノ酸が他のアミノ酸であることが好ましい。従って、本発明の定常領域の好ましい態様として、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、209番目(EU330)のAlaがSer、210番目(EU331)のProがSer、かつ218番目(EU339)のThrがAlaである定常領域を挙げることができる。 本発明により提供されるFcγレセプターへの結合活性が低減した定常領域は少なくとも上述のアミノ酸置換が行われていればよく、同時に他のアミノ酸の置換、欠失、付加および/または挿入などがおこなわれていてもよい。 さらに本発明はC末端のヘテロジェニティーが改善された定常領域を提供する。 より具体的には、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、325番目(EUナンバリングの446番目)のGlyおよび326番目(EUナンバリングの447番目)のLysが欠損した定常領域を提供する。これらのアミノ酸を両方欠損させることにより、初めて抗体のH鎖C末端に由来するヘテロジェニティーを低減することが可能である。 本発明により提供されるC末端のヘテロジェニティーが改善された定常領域は少なくとも上述のアミノ酸の欠失が行われていればよく、同時に他のアミノ酸の置換、欠失、付加および/または挿入などがおこなわれていてもよい。 さらに本発明は、薬物動態の向上した定常領域を提供する。 より具体的には、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、147番目(EUナンバリングの268番目)のHis、234番目(EUナンバリングの355番目)のArg、298番目(EUナンバリングの419番目)のGlnが他のアミノ酸である定常領域を提供する。これらのアミノ酸に置換することにより抗体の薬物動態を向上させることが可能である。他のアミノ酸は特に限定されないが、147番目(EUナンバリング268番目)のHisはGlnであることが好ましく、234番目(EUナンバリングの355番目)のArgはGlnであることが好ましく、298番目(EUナンバリングの419番目)のGlnはGluであることが好ましい。本発明の定常領域には、上記3種類のアミノ酸置換のうち少なくとも1種類のアミノ酸が置換された定常領域が含まれるが、上記3種類全てのアミノ酸が置換されていることが好ましい。 さらに本発明では、ヒンジ領域のヘテロジェニティーが改善され、および/または薬物動態の向上した抗体の好ましい態様として以下の抗体を挙げることができる。 配列番号:8に記載のアミノ酸配列からなるIgG2定常領域を有する抗体において、102番目のCys、103番目のCys、147番目のHis、234番目のArg、298番目のGlnが他のアミノ酸である抗体。 他のアミノ酸は特に限定されないが、102番目(EUナンバリング219)のCysがSer、103番目(EUナンバリング220)のCysがSer、147番目(EUナンバリング268)のHisがGln、234番目(EUナンバリング355)のArgがGln、298番目(EUナンバリング419)のGlnがGluであることが好ましい。 又、本発明の定常領域の他の好ましい態様として、上述の定常領域において、C末端のヘテロジェニティーを低減させるためにさらに325番目のGlyおよび326番目のLysが欠損したIgG2定常領域を挙げることができる。このような抗体の例として、配列番号:13(M82)のアミノ酸配列からなる定常領域を有する抗体を挙げることができる。 これらの抗体定常領域は、Fcγレセプターへの結合活性の低下、免疫原性リスクの低減、酸性条件下での安定性の向上、ヘテロジェニティーの低減、薬物動態の向上および/または、IgG1定常領域と比較した製剤中での高い安定性という性質を有する、最適化された抗体定常領域である。 又、本発明は上述のいずれかに記載の抗体定常領域を含む抗体を提供する。すなわち本発明は以下の(1)〜(5)のいずれかに記載の定常領域を有する抗体に関する。 (1)配列番号:8(IgG2定常領域)のアミノ酸配列において、102番目(EUナンバリング219番目)のCysおよび103番目(EUナンバリング220番目)のCysが他のアミノ酸であるアミノ酸配列を有する抗体定常領域; (2)102番目のCysおよび103番目のCysがSerであること(1)に記載の抗体定常領域; (3)147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnがさらに他のアミノ酸である(1)または(2)に記載の抗体定常領域; (4)147番目のHisがGln、234番目のArgがGln、そして298番目のGlnがGluである(3)に記載の抗体定常領域;および (5)325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する(1)から(4)のいずれかに記載の抗体定常領域。 本発明の抗体は上述の抗体定常領域を有する限り、抗原の種類、抗体の由来などは限定されず、いかなる抗体でもよい。 本発明の抗体には、上述のいずれかに記載のアミノ酸置換を含む抗体の修飾物も含まれる。また抗体の由来としては、特に限定されないが、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体などを挙げることができる。又、本発明の抗体はキメラ抗体、ヒト化抗体、完全ヒト化抗体等であってもよい。本発明の抗体の好ましい態様として、ヒト化抗体を挙げることができる。 本発明の抗体分子は、通常、H鎖とL鎖とを含む。H鎖は、定常領域に加え、可変領域を含むことができる。可変領域は、ヒトのみならずヒト以外の動物種に由来する可変部を含むこともできる。更に、マウスなどのヒト以外の種に由来する可変部からCDRを移植して可変部をヒト化することもできる。H鎖とL鎖で構成される抗体分子は、オリゴマーであることもできる。具体的には、1量体、2量体、あるいはそれ以上のオリゴマーであってもよい。また、上述の抗体定常領域および/または上述の抗体定常領域を含む抗体分子は、抗体様結合分子(scaffold分子)、生理活性ペプチド、結合ペプチド等をFc融合分子として結合させることも可能である。 また本発明の抗体には、上述のいずれかに記載の定常領域を含む抗体であればその修飾物も含まれる。 抗体の修飾物の例としては、例えば、ポリエチレングリコール(PEG)や細胞障害性物質等の各種分子と結合させた抗体を挙げることができる。このような抗体修飾物は、本発明の抗体に化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野においてすでに確立されている。 さらに、本発明の抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体とは、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいうが、当該エピトープは異なる分子中に存在していてもよいし、同一の分子中に存在していてもよい。 上述の抗体定常領域は任意の抗原に対する抗体の定常領域として使用することが可能であり、抗原は特に限定されない。 本発明の抗体は、例えば以下のようにして取得することが可能である。本発明の抗体を取得する一つの態様においては、まず、抗体の定常領域において、1又は複数のアミノ酸残基を、目的の他のアミノ酸に置換又は欠損する。1又は複数のアミノ酸残基を目的の他のアミノ酸に置換する方法としては、例えば、部位特異的変異誘発法(Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100, 468-500、Kramer,W, Drutsa,V, Jansen,HW, Kramer,B, Pflugfelder,M, and Fritz,HJ(1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A. 82, 488-492)が挙げられる。該方法を用いて、抗体の定常領域の所望のアミノ酸を目的の他のアミノ酸に置換することができる。 抗体を取得する為の別の態様としては、まず、当業者に周知な方法によって、目的の抗原に結合する抗体を得る。取得された抗体が非ヒト動物抗体であれば、ヒト化することもできる。抗体の結合活性は当業者に公知の方法で測定することができる。次いで、抗体の定常領域中の1又は複数のアミノ酸残基を、目的の他のアミノ酸に置換または欠損する。 より具体的には、本発明は、以下の(a)及び(b)の工程を含む抗体の製造方法に関する。 (a)定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたH鎖をコードするDNA、及びL鎖をコードするDNAを発現させる工程 (b)工程(a)の発現産物を回収する工程 本発明の製造方法においては、まず、抗体のH鎖をコードするDNAであって、定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたH鎖をコードするDNA、および抗体のL鎖をコードするDNAを発現させる。定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたH鎖をコードするDNAは、例えば、野生型のH鎖をコードするDNAの定常領域部分を取得し、該定常領域中の特定のアミノ酸をコードするコドンが目的の他のアミノ酸をコードするよう、適宜置換を導入することによって得ることが出来る。 また、あらかじめ、野生型H鎖の定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたタンパク質をコードするDNAを設計し、該DNAを化学的に合成することによって、定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたH鎖をコードするDNAを得ることも可能である。 アミノ酸置換の種類としては、これに限定されるものではないが、本明細書に記載の置換が挙げられる。 また、定常領域中において、1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたH鎖をコードするDNAは、部分DNAに分けて製造することができる。部分DNAの組み合わせとしては、例えば、可変領域をコードするDNAと定常領域をコードするDNA、あるいはFab領域をコードするDNAとFc領域をコードするDNAなどが挙げられるが、これら組み合わせに限定されるものではない。L鎖をコードするDNAもまた、同様に部分DNAに分けて製造することができる。 上記DNAを発現させる方法としては、以下の方法が挙げられる。例えば、H鎖可変領域をコードするDNAを、H鎖定常領域をコードするDNAとともに発現ベクターに組み込みH鎖発現ベクターを構築する。同様に、L鎖可変領域をコードするDNAを、L鎖定常領域をコードするDNAとともに発現ベクターに組み込みL鎖発現ベクターを構築する。これらのH鎖、L鎖の遺伝子を単一のベクターに組み込むことも出来る。発現ベクターとしては例えばSV40 virus basedベクター、EB virus basedベクター、BPV(パピローマウイルス)basedベクターなどを用いることができるが、これらに限定されるものではない。 以上の方法で作製された抗体発現ベクターにより宿主細胞を共形質転換する。宿主細胞としてはCHO細胞(チャイニーズハムスター卵巣)等上述の細胞の他にも大腸菌、酵母や枯草菌などの微生物や動植物の個体が用いられる(Nature Biotechnology 25, 563 - 565 (2007)、Nature Biotechnology 16, 773 - 777 (1998)、Biochemical and Biophysical Research Communications 255, 444-450 (1999)、Nature Biotechnology 23, 1159 - 1169 (2005)、Journal of Virology 75, 2803-2809 (2001)、Biochemical and Biophysical Research Communications 308, 94-100 (2003))。また、形質転換にはリポフェクチン法(R.W.Malone et al.,Proc.Natl.Acad.Sci.USA 86,6077 (1989), P.L.Felgner et al.,Proc.Natl.Acad.Sci.USA 84,7413 (1987)、エレクトロポレーション法、リン酸カルシウム法(F.L.Graham & A.J.van der Eb,Virology 52,456-467(1973))、DEAE-Dextran法等が好適に用いられる。 抗体の製造においては、次に、工程(a)で得られた発現産物を回収する。発現産物の回収は、例えば、形質転換体を培養した後、形質転換体の細胞内又は培養液より分離することによって行うことが出来る。抗体の分離、精製には、遠心分離、硫安分画、塩析、限外濾過、1q、FcRn、プロテインA、プロテインGカラム、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの方法を適宜組み合わせて行うことができる。 本発明は上記のようにして製造された抗体を提供する。すなわち本発明は、次の工程によって製造することができる抗体に関する。 (a)可変領域と定常領域を含む抗体の重鎖と、軽鎖をコードするDNAを宿主細胞で発現させる工程;、および (b)(a)において発現された抗体を回収する工程; 上記方法において、重鎖の定常領域のアミノ酸配列が、本発明によって提供された上記の定常領域であることを特徴とする。本発明の好ましい態様において、定常領域はたとえば配列番号:13に示すアミノ酸配列からなる。このアミノ酸配列をコードする塩基配列(配列番号:12)からなるDNAを重鎖可変領域をコードするDNAと連結すれば、抗体の重鎖をコードするDNAとすることができる。たとえば配列番号:6に示されるアミノ酸配列は、IL6受容体を認識するヒト化抗体の重鎖の全長配列である。配列番号:6のアミノ酸配列における定常領域(120−443)は、配列番号:13のアミノ酸配列で構成されている。一方、配列番号:6における1−119は可変領域に相当する。 本発明の抗体を構成する軽鎖としては、たとえばL0-k0(配列番号:2)を組み合わせることができる。本発明の抗体を得るための、重鎖と軽鎖をコードするDNAは、たとえばこれらのアミノ酸配列をコードするDNAを合成することによって得ることができる。重鎖と軽鎖をコードするDNAは、必要に応じて、更にシグナル配列などの付加的な配列を加え、適当な発現ベクターに込みこむことができる。ベクターは、適切な宿主において組み込まれた抗体をコードするDNAを発現するための、プロモーターやエンハンサーを含むことができる。 また本発明は、本発明によって提供された改変されたアミノ酸配列を含む重鎖定常領域で構成された抗体に関する。すなわち本発明は、定常領域と可変領域で構成された重鎖を含む抗体であって、定常領域のアミノ酸配列が、配列番号:8のアミノ酸配列において、少なくとも次の2つのアミノ酸を他のアミノ酸に改変したアミノ酸配列からなることを特徴とする抗体を提供する。 改変するアミノ酸残基:102番目(EUナンバリング219番目)のCys、および 103番目(EUナンバリング220番目)のCys 本発明において、上記アミノ酸残基の改変として、102番目のCysおよび103番目のCysをSerに置換する改変を示すことができる。本発明の抗体を構成する定常領域には、上記の改変に加え、更に付加的な改変を含むことができる。すなわち本発明は、上記の改変に加えて、更に付加的に次のアミノ酸残基の少なくとも1つが改変された定常領域を含む抗体に関する。 改変するアミノ酸残基:147番目(EUナンバリング268番目)のHis、 234番目(EUナンバリング355番目)のArg、および 298番目(EUナンバリング419番目)のGln 本発明において、上記アミノ酸残基の改変として、次のような置換を示すことができる。 147番目のHis=>Gln 234番目のArg=>Gln 298番目のGln=>Glu あるいは本発明の抗体を構成する定常領域には、上記の改変に加え、更に付加的な改変を含むことができる。すなわち本発明は、上記の改変の少なくとも1つを導入された定常領域であって、更に付加的に次のアミノ酸残基が欠失した定常領域を含む抗体に関する。 欠失させるアミノ酸残基:325番目(EUナンバリング446番目)のGly、および 326番目(EUナンバリング447番目)のLys 本発明の抗体は、上記の重鎖に加えて軽鎖を含むことができる。本発明における好ましい軽鎖は、IgG1あるいはIgG2の軽鎖である。軽鎖も重鎖と同様に、可変領域と定常領域を含むことができる。軽鎖の可変領域あるいは定常領域にも、アミノ酸の改変を導入することができる。あるいは、アミノ酸配列の改変や修飾を伴わない軽鎖を組み合わせることもできる。 本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることができる。本発明における好ましい可変領域として、抗原の中和作用を有する抗体の可変領域を示すことができる。たとえば、IL6受容体の中和作用を有する抗体の可変領域を、本発明の抗体を構成する可変領域とすることができる。このような可変領域の例として、たとえば配列番号:6に記載のアミノ酸配列で示されたイムノグロブリンの重鎖の可変領域を示すことができる。重鎖可変領域を構成するアミノ酸配列は、その抗原結合活性が維持される限り、1または複数のアミノ酸残基の改変が許容される。 また、たとえば、ヒンジ領域近傍のジスルフィド結合パターンの影響でIgG4アイソタイプのみでしか高い生物活性が得られない抗体の可変領域を示すことができる。本発明の抗体定常領域を用いれば、高い生物活性を維持しつつ、Fcγレセプターヘの結合を低下させ、さらに薬物動態をIgG1アイソタイプよりも向上させることが可能である。 本発明において、可変領域のアミノ酸配列を改変するときは、そのCDRの配列を保存することが好ましい。したがって、少なくとも1つ、好ましくは2つ、より好ましくは3つの全てのCDRのアミノ酸配列を保存することが望ましい。CDRのアミノ酸配列を保存することによって、可変領域の抗原結合特性を維持することができる。可変領域において改変が許容されるアミノ酸残基の数は、通常1から10、たとえば1−5、好ましくは1または2アミノ酸である。本発明の抗体において、アミノ酸配列の改変とは、アミノ酸残基の置換、付加、欠失、および修飾の少なくとも1つであることができる。 例えば、可変領域のN末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である。したがって、本発明の抗体は、その重鎖のN末端がグルタミンの場合には、それがピログルタミン酸に修飾された可変領域を含む。 重鎖の可変領域によって決定された抗原結合特性に有意な変化をもたらさない限り、本発明の抗体を構成する軽鎖は任意の可変領域を含むことができる。抗体の抗原結合活性は主に重鎖の可変領域によって決定されているためである。あるいは、抗体の特性をより望ましい状態に向上させることを目的として軽鎖の可変部を改変することは許容される。好ましい軽鎖の可変領域は、重鎖の可変領域が由来する抗体の軽鎖可変領域である。したがって、重鎖可変領域に配列番号:6のアミノ酸配列に含まれる可変領域を用いる場合には、たとえばL0-k0(配列番号:2)のアミノ酸配列からなる軽鎖を組み合わせることができる。L0-k0のアミノ酸配列(配列番号:2)中、可変領域は1−107、定常領域は108−214(配列番号:14)である。<IgG2定常領域のヒンジ部分に由来するヘテロジェニティーを改善する方法> また本発明は、配列番号:8に記載のアミノ酸配列(IgG2)において、102番目(EUナンバリング219番目)のCysを他のアミノ酸に置換する工程および103番目(EUナンバリングの220番目)のCysを他のアミノ酸に置換する工程を含む、抗体のヘテロジェニティーを改善する方法に関する。置換後のアミノ酸は特に限定されないが、102番目のCysおよび103番目のCysともにSerに置換されることが好ましい。本発明の抗体のヘテロジェニティーを改善する方法は、配列番号:8に記載のアミノ酸配列(IgG2)において、102番目(EUナンバリング219番目)のCysを他のアミノ酸に置換する工程および103番目(EUナンバリングの220番目)のCysを他のアミノ酸に置換する工程を含む限り、他のアミノ酸置換を含むものであってもよい。アミノ酸置換の方法は特に限定されるものではないが、例えば上述の部位特異的変異誘発法や実施例の記載の方法によって行うことが出来る。 あるいは本発明は、IgG2定常領域のヒンジ部分に由来するヘテロジェニティーが低減された抗体の製造方法を提供する。本発明の製造方法は、(a) 配列番号:8に記載のアミノ酸配列(IgG2)において、102番目(EUナンバリング219番目)のCysおよび103番目(EUナンバリングの220番目)のCysのいずれか、または両方を他のアミノ酸に置換した定常領域、および(b)可変領域とで構成される抗体H鎖をコードするDNAと、抗体L鎖をコードするDNAを発現させる工程と、発現された抗体H鎖と抗体L鎖からなる抗体分子を回収する工程を含む。<IgG2定常領域のC末端アミノ酸欠損に由来するヘテロジェニティーを低減させる方法> また本発明は、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、325番目(EUナンバリングの446番目)のGlyおよび326番目(EUナンバリングの447番目)のLysを欠損させる工程を含む、抗体のヘテロジェニティーを改善する方法に関する。本発明の抗体のヘテロジェニティーを改善する方法は、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、325番目(EUナンバリングの446番目)のGlyおよび326番目(EUナンバリングの447番目)のLysを欠損させる工程を含む限り、他のアミノ酸置換を含んでもよい。アミノ酸置換の方法は特に限定されるものではないが、例えば上述の部位特異的変異誘発法や実施例の記載の方法によって行うことが出来る。 あるいは本発明は、C末端アミノ酸欠損に由来するヘテロジェニティーが低減された抗体の製造方法を提供する。本発明の製造方法は、(a) 配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、325番目(EUナンバリングの446番目)のGlyおよび326番目(EUナンバリングの447番目)のLysを欠損させた定常領域、および(b)可変領域とで構成される抗体H鎖をコードするDNAと、抗体L鎖をコードするDNAを発現させる工程と、発現された抗体H鎖と抗体L鎖からなる抗体分子を回収する工程を含む。<IgG2定常領域のアミノ酸を置換することにより薬物動態を向上する方法> また本発明は、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、147番目(EU268)のHis、234番目(EU355)のArg及び/又は298番目(EU419)のGlnを他のアミノ酸に置換する工程を含む、抗体の薬物動態を向上する方法に関する。本発明の薬物動態を向上する方法は、上述の工程を含む限り、他のアミノ酸置換を含むものであってもよい。置換後のアミノ酸は特に限定されないが、147番目(EU268)のHisはGlnに、234番目(EU355)のArgはGlnに、298番目(EU419)のGlnはGluに置換されることが好ましい。 あるいは本発明は、薬物動態が向上した抗体の製造方法を提供する。本発明の製造方法は、(a) 配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、147番目(EU268)のHis、234番目(EU355)のArg及び298番目(EU419)のGlnからなる群から選択される少なくとも1つのアミノ酸残基を他のアミノ酸に置換した定常領域、および(b)可変領域とで構成される抗体H鎖をコードするDNAと、抗体L鎖をコードするDNAを発現させる工程と、発現された抗体H鎖と抗体L鎖からなる抗体分子を回収する工程を含む。 また本発明は、配列番号:8に記載のアミノ酸配列を有するIgG2定常領域において、下記に記載の工程を含む、IgG2のヒンジ部分に由来するヘテロジェニティーを低減させる方法、薬物動態を向上させる方法および/またはC末端に由来するヘテロジェニティーを低減させる方法に関する。(a) 配列番号:8の102番目(EUナンバリング219)のCysを他のアミノ酸に置換する工程、(b) 配列番号:8の103番目(EUナンバリング220)のCysを他のアミノ酸に置換する工程、(c) 配列番号:8の147番目(EUナンバリング268)のHisを他のアミノ酸に置換する工程、(d) 配列番号:8の234番目(EUナンバリング355)のArgを他のアミノ酸に置換する工程、(e) 配列番号:8の298番目(EUナンバリング419)のGlnを他のアミノ酸に置換する工程、及び(f) 配列番号:8の325番目のGly及び326番目のLys(EUナンバリング446および447)を欠損させる工程。 置換後のアミノ酸は特に限定されないが、102番目(EUナンバリング219)のCysをSer、103番目(EUナンバリング220)のCysをSer、147番目(EUナンバリング268)のHisをGln、234番目(EUナンバリング355)のArgをGln、298番目(EUナンバリング419)のGlnをGluに置換することが好ましい。 あるいは本発明は、前記(a)-(f)からなる群から選択される少なくとも1つのアミノ酸残基の改変を有する抗体H鎖をコードするDNAと、抗体L鎖をコードするDNAを発現させる工程と、発現された抗体H鎖と抗体L鎖からなる抗体分子を回収する工程を含む、ヘテロジェニティーおよび薬物動態のいずれか、または両方が改善された抗体の製造方法に関する。 本発明の方法は、上記工程を含む限り、他のアミノ酸置換や欠損、その他工程を含むものであってもよい。アミノ酸の置換や欠損の方法は特に限定されるものではないが、例えば上述の部位特異的変異誘発法や実施例の記載の方法によって行うことが出来る。<抗体を含む医薬組成物> 本発明は、本発明の抗体を含む、医薬組成物を提供する。 本発明の医薬組成物は、抗体に加えて医薬的に許容し得る担体を導入し、公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。 投与は好ましくは非経口投与であり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型などが挙げられる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。 また、患者の年齢、症状により適宜投与方法を選択することができる。抗体または抗体をコードするポリヌクレオチドを含有する医薬組成物の投与量としては、例えば、一回につき体重1kgあたり0.0001mgから1000mgの範囲で選ぶことが可能である。あるいは、例えば、患者あたり0.001から100000mg/bodyの範囲で投与量を選ぶことができるが、これらの数値に必ずしも制限されるものではない。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。 本明細書で用いられているアミノ酸の3文字表記と1文字表記の対応は以下の通りである。アラニン:Ala:Aアルギニン:Arg:Rアスパラギン:Asn:Nアスパラギン酸:Asp:Dシステイン:Cys:Cグルタミン:Gln:Qグルタミン酸:Glu:Eグリシン:Gly:Gヒスチジン:His:Hイソロイシン:Ile:Iロイシン:Leu:Lリジン:Lys:Kメチオニン:Met:Mフェニルアラニン:Phe:Fプロリン:Pro:Pセリン:Ser:Sスレオニン:Thr:Tトリプトファン:Trp:Wチロシン:Tyr:Yバリン:Val:V なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。〔実施例1〕IgG分子のC末端ヘテロジェニティーの改善H鎖C末端ΔGK抗体の発現ベクター構築 IgG抗体のH鎖C末端配列のヘテロジェニティーとして、C末端アミノ酸のリジン残基の欠損、および、C末端の2アミノ酸のグリシン、リジン両方の欠損によるC末端カルボキシル基のアミド化が報告されている(Anal Biochem. 2007 Jan 1;360(1):75-83.)。抗IL-6レセプター抗体であるTOCILIZUMABにおいても、その主成分は塩基配列上存在するC末端アミノ酸のリジンが翻訳後修飾により欠損した配列であるが、リジンが残存している副成分およびグリシン、リジン両方の欠損によるC末端カルボキシル基のアミド化された副成分もヘテロジェニティーとして存在する。目的物質/関連物質のヘテロジェニティーの製造間差を維持しつつ医薬品として大量に製造することは容易ではなくコスト増につながり、可能な限り単一物質であることが望まれ、抗体を医薬品として開発する上にはこれらのヘテロジェニティーが低減されていることが望ましい。よって医薬品として開発する上ではH鎖C末端のヘテロジェニティーは存在しないことが望ましい。 そこで、C末端アミノ酸のヘテロジェニティーを低減させることを目的にC末端アミノ酸の改変を行った。具体的には、天然型IgG1のH鎖定常領域のC末端のリジンおよびグリシンを塩基配列上あらかじめ欠損させることで、C末端の2アミノ酸のグリシン、リジンの欠損によるC末端アミノ基のアミド化を抑制することが可能かどうかを検討した。 参考例1の方法を用いて、H鎖としてH0-IgG1(アミノ酸配列番号:1)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるTOCILIZUMAB(以降、IL6R H0/L0-IgG1と略)を作製し、さらにH鎖のEUナンバリング447番目のLysおよび/またはEUナンバリング446番目のGlyをコードする塩基配列について、これを終止コドンとする変異を導入した。これにより、C末端の1アミノ酸のリジン(EUナンバリング447)をあらかじめ欠損させた抗体のH鎖であるH0-IgG1ΔK(アミノ酸配列番号:3)、C末端の2アミノ酸のグリシン(EUナンバリング446)、リジン(EUナンバリング447)をあらかじめ欠損させた抗体のH鎖であるH0-IgG1ΔGK(アミノ酸配列番号:4)の発現ベクターを作製した。 H鎖としてH0-IgG1(アミノ酸配列番号:1)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1/L0-k0、H鎖としてH0-IgG1ΔK(アミノ酸配列番号:3)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1ΔK /L0-k0、および、H鎖としてH0-IgG1ΔGK-k0(アミノ酸配列番号:4)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1ΔGK /L0-k0の発現と精製は参考例1で記した方法で実施した。以上の抗体の重鎖と軽鎖の組み合わせを以下にまとめた。 抗体 重鎖 軽鎖 IL6R H0-IgG1 /L0-k0 配列番号:1 配列番号:2 IL6R H0-IgG1ΔK /L0-k0 配列番号:3 配列番号:2 IL6R H0-IgG1ΔGK /L0-k0 配列番号:4 配列番号:2H鎖C末端ΔGK抗体の陽イオン交換クロマトグラフィー分析 精製した抗体のヘテロジェニティーの評価を陽イオン交換クロマトグラフィーにより実施した。カラムとしてはProPac WCX-10, 4×250 mm (Dionex) を使用し、移動相Aは25 mmol/L MES/NaOH, pH 6.1、移動相Bは25 mmol/L MES/NaOH, 250 mmol/L NaCl, pH 6.1を使用し、適切な流量およびグラジエントを用いて実施した。精製したIL6R H0-IgG1/L0-k0、IL6R H0-IgG1ΔK /L0-k0およびIL6R H0-IgG1ΔGK /L0-k0陽イオン交換クロマトグラフィーによる評価を行った結果を図1に示した。 その結果、H鎖定常領域のC末端のリジンだけでなく、H鎖定常領域のC末端のリジンおよびグリシンを両方を塩基配列上あらかじめ欠損させることで初めてC末アミノ酸のヘテロジェニティーを低減可能であることが見出された。ヒト抗体定常領域IgG1、IgG2、IgG4において、C末端配列はいずれもEUナンバリング(Sequences of proteins of immunological interest, NIH Publication No.91-3242 を参照)447番目がリジン、446番目がグリシンになっていることから、本検討で見出されたC末アミノ酸のヘテロジェニティーを低減させる方法はIgG2定常領域とIgG4定常領域、あるいはそれらの改変体にも適用可能であると考えられた。〔実施例2〕天然型IgG2のジスルフィド結合に由来するヘテロジェニティーを低減し、天然型IgG1よりも優れた薬物動態を示す新規定常領域の作製天然型IgG1と天然型IgG2のヘテロジェニティー 標的細胞をエフェクター機能等で殺傷するような癌に対する抗体医薬の場合は、エフェクター機能を有するIgG1の定常領域(アイソタイプ)が好ましいが、標的抗原の機能を中和するような抗体医薬、あるいは、標的細胞に対して結合はするが殺傷することは避ける必要がある抗体医薬の場合は、Fcγレセプターへの結合は好ましくない。 Fcγレセプターへの結合を低下させる方法としては、IgG抗体のアイソタイプをIgG1からIgG2あるいはIgG4に変える方法が考えられ(Ann Hematol. 1998 Jun;76(6):231-48.)、FcγレセプターIへの結合および各アイソタイプの薬物動態の観点からはIgG4よりはIgG2が望ましいと考えられた(Nat Biotechnol. 2007 Dec;25(12):1369-72)。一方、抗体を医薬品として開発するにあたり、そのタンパク質の物性、中でも均一性と安定性は極めて重要であり、IgG2アイソタイプは、ヒンジ領域のジスルフィド結合の掛け違いに由来するヘテロジェニティーが極めて多いことが報告されている(J Biol Chem. 2008 Jun 6;283(23):16194-205. 、J Biol Chem. 2008 Jun 6;283(23):16206-15. 、Biochemistry. 2008 Jul 15;47(28):7496-508.)。 そこで実際に天然型IgG1の定常領域を有するIL6R H0-IgG1/L0-k0と天然型IgG2の定常領域を有するIL6R H0-IgG2/L0-k0を作製し、両者のヘテロジェニティーの評価を行った。実施例1で作製したH鎖としてIL6R H0-IgG1(アミノ酸配列番号:1)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1/L0-k0、および、H鎖定常領域をIgG2に変換したH鎖としてIL6R H0-IgG2(アミノ酸配列番号:5)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からIL6R H0-IgG2/L0-k0の発現と精製を参考例1で記した方法で実施した。以上の抗体の重鎖と軽鎖の組み合わせを以下にまとめた。 抗体 重鎖 軽鎖 IL6R H0-IgG1 /L0-k0 配列番号:1 配列番号:2 IL6R H0-IgG2 /L0-k0 配列番号:5 配列番号:2 天然型IgG1の定常領域を有するIL6R H0-IgG1/L0-k0と天然型IgG2の定常領域を有するIL6R H0-IgG2/L0-k0のジスルフィド結合に由来するヘテロジェニティーの評価方法として、陽イオン交換クロマトグラフィーによる評価を行った。カラムとしてProPac WCX-10 (Dionex)を用い、移動相Aとして20mM Sodium Acetate, pH5.0、移動相Bとして20mM Sodium Acetate, 1M NaCl, pH5.0を使用し、適切な流量およびグラジエントを用いて実施した。その結果、図2に示すとおり、天然型IgG2の定常領域を有するIL6R H0-IgG2/L0-k0は複数のピークが見られ、ほぼ単一のメインピークのみからなる天然型IgG1の定常領域を有するIL6R H0-IgG1/L0-k0と比較して著しくヘテロジェニティーが高いことが分かった。 IgGタイプの抗体のヒンジ領域周辺構造の詳細を図3に示した。IgG抗体はヒンジ領域近傍において、H鎖とL鎖(あるいは2つのH鎖)がジスルフィド結合している。このジスルフィド結合のパターンは、以下に記すようにIgGタイプの抗体のアイソタイプによって異なる。天然型IgG1のヒンジ領域におけるジスルフィド結合は、図4に示すような単一なパターンであるためジスルフィド結合に由来するヘテロジェニティーは存在せず、陽イオン交換クロマトグラフィーにおいてほぼ単一のメインピークとして溶出したと考えられる。 一方、天然型IgG2のヒンジ領域におけるジスルフィド結合は、図3に示すように、天然型IgG2はヒンジ領域に2つのシステインを有し(EUナンバリング219番目と220番目、このヒンジ領域の2つのシステインに隣接するシステインとして、H鎖のCH1ドメインに存在するEUナンバリング131番目のシステインとL鎖のC末端のシステイン、および、2量化する相手H鎖の同じヒンジ領域の2つのシステインが存在する。そのため、IgG2のヒンジ領域周辺にはH2L2の会合した状態では合計8個のシステインが隣接している。これにより、天然型IgG2はジスルフィド結合の掛け違いによる様々なヘテロジェニティーが存在し、著しくヘテロジェニティーが高いと考えられる。 これらジスルフィド結合の掛け違いに由来する目的物質/関連物質のヘテロジェニティーの製造間差を維持しつつ医薬品として大量に製造することは容易ではなくコスト増につながり、可能な限り単一物質であることが望まれる。よってIgG2アイソタイプの抗体を医薬品として開発する上では安定性を低下させることなくジスルフィド結合由来のヘテロジェニティーが低減されていることが望ましい。実際、US20060194280(A1)において、天然型IgG2はイオン交換クロマトグラフィー分析においてジスルフィド結合に由来する様々なヘテロピークが観察されており、これらのピーク間では生物活性が異なることも報告されている。 このヘテロピークを単一化する方法として、US20060194280(A1)においては精製工程におけるリフォールディングが報告されているが、製造においてこれらの工程を用いることはコストがかかり煩雑であるため、好ましくはアミノ酸置換によりジスルフィド結合が単一なパターンで形成されるIgG2変異体を作製することでヘテロピークが単一化することが望ましいと考えられた。しかしながら、これまでにジスルフィド結合が単一なパターンで形成されるようなIgG2変異体に関する報告はない。各種天然型IgG2変異体の作製 天然型IgG2のジスルフィド結合の掛け違いによるヘテロジェニティーを低減する方法として、H鎖のヒンジ領域に存在するEUナンバリング219番目のシステインのみをセリンに改変する方法、および、220番目のシステインのみをセリンに改変する方法が考えられる(Biochemistry. 2008 Jul 15;47(28):7496-508.)。この戦略を天然型IgG2のH鎖定常領域のアミノ酸配列(アミノ酸番号:8)に適用すると、次のような改変体が考えられる。*SC:EUナンバリング219番目のシステインをセリンに改変したH鎖定常領域(配列番号:10)*CS:EUナンバリング220番目のシステインをセリンに改変したH鎖定常領域(配列番号:11) しかしながら、これらH鎖定常領域であるSCおよびCSについては、図5に示すとおり、天然型IgG2と同様、ジスルフィド結合のパターンが単一ではなく、複数のパターンが考えられるため依然として多数のヘテロジェニティーが存在すると考えられる。 そこで、単一なジスルフィド結合のパターンを形成するようなH鎖定常領域として、SC(配列番号:10)に対してさらにH鎖EUナンバリング219番目のシステインをセリンに改変した。さらに、薬物動態を向上させるために268番ヒスチジンをグルタミンへ改変し、355番アルギニンをグルタミンへ改変し、419番グルタミンをグルタミン酸へ改変し、さらにH鎖C末端のヘテロジェニティーを回避するためにH鎖定常領域のC末端のリジンおよびグリシンを塩基配列上あらかじめ欠損させたH鎖定常領域であるM82(配列番号:13)が考えられた。M82は図6に示すとおり単一なジスルフィド結合のパターンを形成すると考えられた。 そこで、IL6R H0-M82(アミノ酸配列番号:6)の発現ベクターの構築を参考例1に記した方法で実施した。H鎖としてIL6R H0-M82(アミノ酸配列番号:6)を用い、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)を用い、IL6R H0-M82/L0-k0の発現および精製を参考例1で記した方法で実施した。陽イオン交換クロマトグラフィー分析によるヘテロジェニティーの分析 H0-M82/L0-k0のヘテロジェニティーの評価方法として、上述に記載した陽イオン交換クロマトグラフィーによる方法を用いて実施した。IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0およびIL6R H0-M82/L0-k0の陽イオン交換クロマトグラフィーによる評価を行った結果を図7に示した。 その結果、図7に示すとおり、H鎖定常領域をIgG1からIgG2に変換することでヘテロジェニティーが増大したが、H鎖定常領域をM82に変換することでヘテロジェニティーが大幅に低減された。IgGタイプの抗体の薬物動態 IgG分子の血漿中滞留性が長い(消失が遅い)のは、IgG分子のサルベージレセプターとして知られているFcRnが機能しているためである(Nat Rev Immunol. 2007 Sep;7(9):715-25)。ピノサイトーシスによってエンドソームに取り込まれたIgG分子は、エンドソーム内の酸性条件下(pH6.0付近)においてエンドソーム内に発現しているFcRnに結合する。FcRnに結合できなかったIgG分子はライソソームへ進みライソソームで分解されるが、FcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下(pH7.4付近)においてFcRnから解離することで再び血漿中に戻る。 IgGタイプの抗体として、IgG1、IgG2、IgG3、IgG4のアイソタイプが知られているが、これらのヒトでの血漿中半減期は、IgG1、IgG2が約36日、IgG3が約29日、IgG4が16日であることが報告されており(Nat Biotechnol. 2007 Dec;25(12):1369-72.)、IgG1およびIgG2の血漿中滞留性が最も長いと考えられている。一般に抗体医薬のアイソタイプはIgG1、IgG2、IgG4であるが、これらのIgG抗体の薬物動態をさらに向上する方法として、IgGの定常領域の配列を改変することで上述のヒトFcRnへの結合性を向上させる方法が報告されている(J Biol Chem. 2007 Jan 19;282(3):1709-17、J Immunol. 2006 Jan 1;176(1):346-56)。 マウスFcRnとヒトFcRnでは種差が存在することから(Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18709-14)、定常領域の配列を改変したIgG抗体のヒトにおける血漿中滞留性を予測するためには、ヒトFcRnへの結合評価およびヒトFcRnトランスジェニックマウスにおいて血漿中滞留性を評価することが望ましいと考えられた(Int Immunol. 2006 Dec;18(12):1759-69)。IgG1-k0とM82-k0のヒトFcRnへの結合比較 ヒトFcRnの調製は参考例2に記された方法で実施した。ヒトFcRnへの結合評価にはBiacore 3000 を用い、センサーチップに固定化したProtein Lあるいはウサギ抗ヒトIgG Kappa chain抗体へ結合させた抗体に、アナライトとしてヒトFcRnを相互作用させた際のヒトFcRnの結合量よりaffinity(KD)を算出した。具体的には、ランニングバッファーとして150mM NaClを含む50mM Na-phosphate buffer、pH6.0を用い、アミンカップリング法によりセンサーチップ CM5 (BIACORE) にProtein Lあるいはウサギ抗ヒトIgG Kappa chain抗体を固定化した。その後、IL6R H0-IgG1/L0-k0およびIL6R H0-M82/L0-k0をそれぞれ0.02% Tween20を含むランニングバッファーで希釈してインジェクトしチップに抗体を結合させた後、ヒトFcRnをインジェクトし、ヒトFcRnの抗体への結合性を評価した。 Affinityの算出にはソフトウエア、BIAevaluationを用いた。得られたセンサーグラムより、ヒトFcRnインジェクト終了直前の抗体へのhFcRn結合量を求め、これをsteady state affinity法でフィッティングしてヒトFcRnに対する抗体のaffinityを算出した。 IL6R H0-IgG1/L0-k0とIL6R H0-M82/L0-k0のヒトFcRnへの結合性の評価をBIAcoreにより行った結果、表1に示すとおり、IL6R H0-M82/L0-k0の結合性はIL6R H0-IgG1/L0-k0よりも約1.34倍向上していることが見出された。ヒトFcRnトランスジェニックマウスにおけるIgG1-k0とM82-k0の薬物動態比較 ヒト FcRnトランスジェニックマウス(B6.mFcRn-/-.hFcRn Tg line 276 +/+ マウス、Jackson Laboratories)における体内動態の評価は以下の通り行った。IL6R H0-IgG1/L0-k0およびIL6R H0-M82/L0-k0をそれぞれマウスに1 mg/kgの投与量で静脈内に単回投与し適時採血を行った。採取した血液は直ちに4℃、15,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。血漿中濃度はELISA法を用いて測定した(参考例3参照)。 IL6R H0-IgG1/L0-k0およびIL6R H0-M82/L0-k0のヒトFcRnトランスジェニックマウスにおける血漿中滞留性の評価を行った結果、図8に示すとおり、IL6R H0-M82/L0 -k0はIL6R H0-IgG1/L0-k0と比較して薬物動態の向上が確認された。これは上記に示したとおり、IL6R H0-M82/L0 -k0のヒトFcRnへの結合性がIL6R H0-IgG1/L0-k0と比較して向上しているからであると考えられた。 IL6R H0-M82/L0-k0は、H鎖EUナンバリング219番目と220番目のシステインをセリンに置換することで、天然型IgG2のジスルフィド結合に由来するヘテロジェニティーを回避するだけでなく、天然型IgG1と比較して薬物動態が向上し、さらに実施例1で示したH鎖C末端のΔGKの改変によりH鎖C末端に由来するヘテロジェニティーも回避されていることから、抗体のH鎖/L鎖定常領域として、M82(配列番号:13)/k0(配列番号:14)は極めて有用であると考えられた。 一般にIgG抗体はそのアイソタイプ(IgG1, IgG2, IgG3, IgG4あるいはこれらの改変体)によってADCC活性等のエフェクター機能が異なるだけでなく、抗原結合能や抗原に結合することに由来する生物活性が大きく異なることが知られている(Immunology, 1996, 88, 169-173、Mol Immunol. 1994 Jun;31(8):577-84.、Infection and Immunity, Mar 2007, 1424-1435、Nat Biotechnol. 2007 Dec;25(12):1369-72.、Nat Biotechnol. 2008 Feb;26(2):209-11.)。この理由の一つとしては、アイソタイプによってIgGのヒンジ部分の自由度が異なることが考えられる(J Immunol. 1997 Oct 1;159(7):3372-82.、Mol Immunol. 1994 Oct;31(15):1201-10.)。ヒンジ部分の自由度に影響を与える因子として、ヒンジ領域近傍のジスルフィド結合パターンが考えられる。 例えば、IgG4アイソタイプでのみ高い生物活性が得られる抗体の場合(WO/2005/035756)、IgG4と同様の高い生物活性を得るためには、IgG4アイソタイプと同じヒンジ領域近傍のジスルフィド結合パターンが必要と考えられる。上述のようにFcγレセプターIへの結合および各アイソタイプの薬物動態の観点からはIgG4よりはIgG2が望ましいと考えられる(Nat Biotechnol. 2007 Dec;25(12):1369-72)が、IgG2とIgG4ではヒンジ領域近傍のジスルフィド結合パターンが異なる。そのため、IgG2アイソタイプではIgG4アイソタイプと同様の高い生物活性が得られない可能性が高い。 図9に示すとおり、本検討で見出された新規定常領域M82のヒンジ領域近傍のジスルフィド結合パターンはIgG4と同一であることから、IgG4アイソタイプと同様のヒンジ部分の自由度を有すると考えられる。そのため新規定常領域M82は、IgG4アイソタイプでのみ高い生物活性が得られる抗体に対して、IgG4アイソタイプの高い生物活性を維持しつつ、Fcγレセプターへの結合を低下させ、さらに薬物動態をIgG1よりも向上させることが可能であると考えられることから、極めて有用であると考えられた。〔参考例1〕抗体の発現ベクターの作製および抗体の発現と精製 目的の抗体のH鎖およびL鎖の塩基配列をコードする遺伝子は、PCR等を用いて当業者公知の方法で行った。アミノ酸置換の導入はQuikChange Site-Directed Mutagenesis Kit(Stratagene)あるいはPCR等を用いて当業者公知の方法で行った。得られたプラスミド断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。 抗体の発現は以下の方法を用いて行った。ヒト胎児腎癌細胞由来HEK293H株(Invitrogen)を10 % Fetal Bovine Serum (Invitrogen)を含むDMEM培地(Invitrogen)へ懸濁し、5〜6 × 105個/mLの細胞密度で接着細胞用ディッシュ(直径10 cm, CORNING)の各ディッシュへ10 mLずつ蒔きこみCO2インキュベーター(37℃、5% CO2)内で一昼夜培養した後に、培地を吸引除去し、CHO-S-SFM-II(Invitrogen)培地6.9 mLを添加した。調製したプラスミド(H鎖発現ベクターおよびL鎖発現ベクター)をlipofection法により細胞へ導入(共形質転換)した。得られた培養上清を回収した後、遠心分離(約2000 g、5分間、室温)して細胞を除去し、さらに0.22μmフィルターMILLEX(R)-GV(Millipore)を通して滅菌して培養上清を得た。得られた培養上清からrProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定した。得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。〔参考例2〕ヒトFcRnの調製 FcRnはFcRnとβ2-microglobulinの複合体である。公開されているヒトFcRn遺伝子配列(J. Exp. Med. 180 (6), 2377-2381 (1994))を元に、オリゴDNAプライマーを作製した。ヒトcDNA(Human Placenta Marathon-Ready cDNA, Clontech)を鋳型とし、作製したプライマーを用いPCR法により遺伝子全長をコードするDNA断片を調整した。得られたDNA断片を鋳型に、PCR法によりシグナル領域を含む細胞外領域(Met1-Leu290)をコードするDNA断片を増幅し、動物細胞発現ベクターへ挿入した(ヒトFcRnアミノ酸配列番号:15)。同様に、公開されているヒトβ2-microglobulin遺伝子配列(Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002))を元に、オリゴDNAプライマーを作製した。ヒトcDNA(Hu-Placenta Marathon-Ready cDNA, CLONTECH)を鋳型とし、作製したプライマーを用いPCR法により遺伝子全長をコードするDNA断片を調製した。得られたDNA断片を鋳型に、PCR法によりシグナル領域を含むβ2-microglobulin全長(Met1-Met119)をコードするDNA断片を増幅し、動物細胞発現ベクターへ挿入した(ヒトβ2-microglobulinアミノ酸配列 配列番号:16)。 可溶型ヒトFcRnの発現は以下の手順で行った。調製したヒトFcRnおよびヒトβ2-microglobulinのプラスミドを、10 % Fetal Bovine Serum (Invitrogen)を用いたlipofection法により、ヒト胎児腎癌細胞由来HEK293H株(Invitrogen)の細胞へ導入した。得られた培養上清を回収した後、IgG Sepharose 6 Fast Flow(Amersham Biosciences)を用い、(J Immunol. 2002 Nov 1;169(9):5171-80.)の方法に従い精製を行った。その後、HiTrap Q HP(GE Healthcare)により精製を行った。〔参考例3〕マウスにおける抗体血漿中濃度の測定 マウス血漿中抗体濃度測定は、抗ヒトIgG抗体を用いたELISA法にて、それぞれの抗体をスタンダードとして使用して、当業者公知の方法で測定した。 本発明は、医薬品として生体に投与される抗体の製造に有用である。より具体的には、本発明の定常領域を含む抗体は、ヘテロジェニティーが低いので、医薬品の品質の維持において有利である。言い換えると、本発明の定常領域を含む抗体を医薬品として利用すれば、均質な抗体を安定に供給することができる。たとえば、IL6レセプターに対する抗体であるTOCILIZUMAB(一般名)は、自己免疫疾患などの治療に用いられるヒト化抗体である。したがって、たとえば当該抗体の定常領域を本発明によって提供された定常領域と置換することによって、その品質を安定に維持することができる。 また本発明は、定常領域のアミノ酸配列を改変することによって、薬物動態が改善された抗体を提供した。本発明によって薬物動態が改善された抗体は、生体中において、より長い時間にわたって活性を維持する。したがって、たとえばIL6レセプターに対する抗体であるTOCILIZUMAB(一般名)の定常領域を、本発明によって提供される定常領域と置換することによって、その薬物動態を改善し、生体内における作用濃度をより長期にわたって維持しうる抗体とすることができる。さらに本発明は、IgG4アイソタイプと同様のジスルフィド結合パターンを有することから、IgG4アイソタイプでのみ高い生物活性が得られる抗体の定常領域としても有用である。 配列番号:8(IgG2定常領域)のアミノ酸配列において、102番目(EUナンバリング219番目)のCys、103番目(EUナンバリング220番目)のCys、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnが他のアミノ酸であるアミノ酸配列を有し、 102番目のCysおよび103番目のCysがSerであり、 147番目のHisはGln、234番目のArgはGln、298番目のGlnはGluであり、 さらに325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysが欠損したアミノ酸配列を有する、抗体定常領域。 配列番号:8(IgG2定常領域)のアミノ酸配列において、102番目(EUナンバリング219番目)のCys、103番目(EUナンバリング220番目)のCys、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnが他のアミノ酸であるアミノ酸配列を有し; 102番目のCysおよび103番目のCysがSerであり; 147番目のHisがGln、234番目のArgがGln、そして298番目のGlnがGluであり;かつ 325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する 抗体定常領域を有する抗体。 請求項2に記載の抗体を含む医薬組成物。 配列番号:8(IgG2定常領域)のアミノ酸配列において、102番目(EUナンバリング219番目)のCys、103番目(EUナンバリング220番目)のCys、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnが他のアミノ酸であるアミノ酸配列を有する抗体定常領域であって、当該アミノ酸改変はヒンジ領域のヘテロジェニティーが改善され、かつ薬物動態が向上するようにアミノ酸が改変されており、さらに、325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysが欠損したアミノ酸配列を有する抗体定常領域。配列表