タイトル: | 公開特許公報(A)_微生物 |
出願番号: | 2009261064 |
年次: | 2010 |
IPC分類: | C12N 1/14,C12N 1/00 |
青木 健次 小池 謙造 JP 2010042026 公開特許公報(A) 20100225 2009261064 20091116 微生物 花王株式会社 000000918 特許業務法人アルガ特許事務所 110000084 有賀 三幸 100068700 高野 登志雄 100077562 中嶋 俊夫 100096736 村田 正樹 100117156 山本 博人 100111028 青木 健次 小池 謙造 C12N 1/14 20060101AFI20100129BHJP C12N 1/00 20060101ALI20100129BHJP JPC12N1/14 EC12N1/00 P 5 2003402858 20031202 OL 14 4B065 4B065AA71X 4B065AC14 4B065BA22 4B065BB26 4B065BD32 4B065BD34 4B065CA28 4B065CA57 4B065CA60 本発明は、メラニン分解能を有する新規微生物及び当該微生物を使用してメラニンを分解する方法に関する。 人毛あるいはカビ等に含まれるメラニン類は、黒色の含窒素有機化合物であって、一般的には、アミノ酸(チロシン)からチロシナーゼ等によって、生体内で造られる高分子化合物である。このメラニンの分解は、ヘアカラー、ブリーチなどにおいては、アルカリ剤と過酸化水素により行われている。また、住居(特に風呂場等)の黒カビ(例えばクラドスポリウム属)による汚染は、アルカリ条件下で次亜塩素酸ナトリウム等により、漂白・除去されている。 これらのメラニン分解では、過激な酸化条件を用いるため、人毛においてはタンパク損傷による毛髪のダメージが問題となる。また、住居のカビ取り剤として次亜塩素酸ナトリウムを主成分とするものは、目や皮膚を痛める危険性、強い塩素臭を伴うこと、更には酸性の商品と混ぜることにより有害な塩素ガスが発生する等の問題があった。 メラニン類を分解し、除去する技術としては、微生物やその培養物を用いたもの(特許文献1,2参照)、過酸化水素又はこれを生成する物質若しくは酵素と、ペルオキシダーゼ等の過酸化水素分解酵素との組み合わせによるもの(特許文献3,4,5参照)、ラッカーゼ(ポリフェノールオキシダーゼ)を用いたもの(特許文献6参照)、ペルオキシダーゼ又はラッカーゼと特定のメディエーター化合物との組み合わせによるもの(特許文献7参照)等が知られている。特開平6-219933号公報特開平7-213294号公報特開平7-157409号公報特開平7-165553号公報特開平7-97597号公報特開平8-217659号公報特開2002-12535号公報 しかしながら、これら従来技術は、人毛メラニンやカビメラニンに対する実際の効果は確認されておらず、また過酸化水素以外にマンガンや特定の化合物が必要であったり、作用の弱さなどの問題から、実用性の高いものではなかった。従って、より効率的で、反応性の高い微生物や酵素が求められている。 本発明の第1の目的は、メラニン類に対して高い分解能を有する酵素を産生する微生物を提供することである。更に、本発明の第2の目的は、該微生物を用いた安全で効率的なメラニン分解方法を提供することである。 本発明者らは、土壌から得られた新規な担子菌が、上記要求を満たすものであることを見出した。 すなわち本発明は、過酸化水素を必須の補助因子とし、マンガンを必要とすることなくメラニンを分解する酵素であって、最適pHが6以下であり、pH4.5における人毛又は合成メラニンのメラニン分解活性(比活性U/mg)が西洋わさび由来ペルオキシダーゼの2倍以上である酵素を産生する微生物を提供するものである。 更に本発明は、メラニンに対し上記微生物を作用させるメラニン分解方法を提供するものである。 本発明の微生物が産生する酵素は、人毛メラニンやカビメラニンのような難分解性のメラニン類にも高い分解能を示す。本発明によれば、上記微生物を対象物に作用させることによって、対象物中のメラニン類を分解し、脱色することができる。また、本発明の方法は、従来法よりも低pH(中性〜酸性)で行うことができるため、安全性も良好である。MD-1株をメラニン-麦芽エキス培地に接種して培養したときのメラニンの脱色を示す図である。MD-1株の培養による人毛メラニン分解酵素の生産を示す図である。精製メラニン分解酵素の電気泳動の結果を示す図である〔(A)ネイティブPAGE,(B)SDS-PAGE,(C)分子量マーカー〕。酵素活性に与えるpHの影響を示す図である。 本発明の微生物が産生するメラニン分解酵素は、過酸化水素を必須の補助因子とするペルオキシダーゼであり、E.C.1.11.1.7に分類される酵素である。この分類に属する酵素には、マンガンを必要とするマンガン−ペルオキシダーゼといわれる酵素と、マンガンを必要としない酵素があるが、本酵素は、マンガンを必要とすることなく、メラニンを分解することができる。 本発明でいうメラニン分解活性は、市販合成メラニン(シグマ社,M8631)又は毛髪メラニン(塩酸処理メラニン,伊藤ら,アナリティカル・バイオケミストリー,144巻,527頁、1985年)を基質として用い、酵素反応後に残存するメラニンを540nmにおける吸光度に基づいて定量することにより測定することが可能である。反応液の標準組成は、0.004%(w/v)上記市販合成メラニン又は毛髪メラニン、酵素、35mM乳酸−コハク酸緩衝液(pH4.5)、0.1mM過酸化水素である。酵素反応は30℃で行い、H2O2の添加によって反応を開始し、経時的に540nmにおける吸光度の減少を測定することでメラニンの分解を測定できる。酵素単位1ユニット(unit)は、1時間にメラニン由来の540nmにおける吸光度を0.001減少させる酵素量と定義する。 このような条件下で、本発明の微生物が産生する酵素は、人毛又は合成メラニンの分解においてマンガンを必要とせず、市販西洋わさび(ホース・ラディッシュ)由来のペルオキシダーゼの2倍以上の比活性(U/mg,タンパク1mgあたりの酵素単位)を示す。市販の西洋ワサビ由来ペルオキシダーゼ(シグマ社,P-8415)についてメラニン分解活性を測定したところ、この酵素(ロット21K7470)の合成メラニン及び毛髪メラニン分解活性の比活性は、それぞれ2×104(U/mg)、1×104(U/mg)であった。すなわち、本発明の微生物が産生するメラニン分解酵素は、pH4.5において、酵素タンパク1mgあたり4×104(U/mg)以上の合成メラニン分解活性、かつ/又は、2×104(U/mg)以上の毛髪メラニン分解活性を示す酵素である。 また、本発明の微生物が産生する酵素の分子量は、SDS-PAGEで5万〜10万が好ましい。 本発明の微生物としては、担子菌、特に本発明者らが土壌中から見出した、セリポリオプシス エスピー.(Ceriporiopsis sp.)MD-1株(FERM P-19507)が好適な例として挙げられる。 上記の酵素を産生するMD-1株は、土壌から、真菌類を分離する既知の方法を用いて分離することができる。分離用の培地・方法としては、たとえば「微生物の分類と同定 改訂版(上巻)」、学会出版センター(1984年)等に記載されている培地・方法が用いられる。特に、本菌はメラニン分解に関与する酵素群を生産するため、例えば真菌用培地(麦芽エキス培地)にメラニンを少量(0.1%(w/v)程度)加え、その脱色・分解性を判定することにより、比較的容易にスクリーニングすることができる。すなわち、土壌サンプルなどを蒸留水に懸濁し、この懸濁液を適宜希釈したものをスクリーニング用試料として用いる。この試料を、0.1%(w/v)メラニンを含有する真菌用分離用培地(麦芽エキス寒天培地)上に塗沫し、適温(20〜30℃)で培養する。そして、メラニンを脱色し得る菌株を、メラニン分解酵素を生産する菌株として取得することが可能である。 MD-1株は、以下のような菌学的性質を有する。1)顕微鏡による形態観察 ぺトリ皿上で0.5mmの厚さに調製した2.0%(w/v)寒天を含む麦芽エキス培地から、滅菌したカッターナイフを用いて約10mm四方の培地片を切り出し、滅菌したスライドガラス上に置いた。麦芽エキス斜面培地で30℃、2日間培養したMD-1株の菌糸を1白金耳接種し、カバーグラスをかけ、その三方をワセリンで固定した。30℃で培養しながら24時間ごとに検鏡した。 培養開始3日後のMD-1株の顕微鏡観察の結果、本菌は、担子菌亜門に属する菌株のみが持つ担子器とクランプ結合(かすがい連結)を有することから、担子菌亜門に属することがわかった。2)菌体の生育及び形態 以下の9種の培地上にMD-1株を植菌し、各培地上の生育状態についての形態学的性質、コロニーの表面の形状・色調、コロニー裏面の色調を調べた(各培地ともpH6.0に調整した)。 i.麦芽エキス寒天培地 ii.ポテト・グルコース寒天培地 iii.ツァペック寒天培地 iv.サブロー寒天培地 v.オートミール寒天培地 vi.合成ムコール寒天培地 vii.YpSs寒天培地 viii.グルコース・ドライイースト寒天培地 ix.コーンミール寒天培地 MD-1株は、すべての培地で生育し、コロニー表面は綿毛状で白色、生育が進むとコロニー表面は固くなり薄茶色に変化していった。コロニー裏面は生育に関わらず白色、コロニー周辺は疎で拡散的であった。3)最適生育条件・生育の範囲(麦芽エキス寒天培地) 麦芽エキス培地を用い、MD-1株を液体培養した。pH2.0〜11.0の範囲で変化させ、30℃、200rpmの培養条件でpHを検討し、10〜50℃の範囲で変化させ、pH6.0、200rpmの培養条件で温度を検討した。 MD-1株は、pH3.0〜11.0の範囲において良好な生育を示し、pH2.5以下では生育しなかった。また、15〜35℃の範囲において生育し、25〜30℃の範囲において良好な生育を示した。10℃以下及び40℃以上では生育しなかった。4)フェノールオキシダーゼ反応 没食子酸及びタンニン酸をそれぞれ0.5%加えた麦芽エキス寒天培地上に、MD-1株を植菌し、フェノールオキシダーゼ反応を示すハローの形成について調べた。MD-1株は、培養開始2日目にハローを形成した。5)ゲノムDNAにおけるGC含量 精製DNA溶液20μL(210μg/mL)をマイクロチューブにとり、100℃において10分間保ち、直ちに氷水中で急冷しDNAを熱変性させた。20μLのヌクレアーゼP1溶液(ヤマサ醤油社)を加え、ウォーターバスを用いて50℃において1時間インキュベートした。これを試料とし、ヌクレオチドとしてHPLC分析に供した。標準ヌクレオチドも同様にHPLC分析に供した。HPLCの条件を以下に示す。 カラム:Inertsil ODS-2(4.6×150mm,5μm) 溶出液:NH4H2PO4溶液(0.02M)-アセトニトリル(60:1,v/v) 流速:0.5mL/min 検出波長:270nm この結果、MD-1株のゲノムDNAにおけるGC含量は、55.96mol%であった。6)18SrRNA遺伝子の解析 MD-1株の18SrRNA遺伝子のヌクレオチド配列を決定し、他の菌株の18SrRNA遺伝子のヌクレオチド配列と比較することにより同定を行った。 まず、サンズーらにより報告されている方法〔Gurpreet S. Sandhu, Bruce C. Kline, Leslie Stockman, and Glenn D. Roberts. Molecular probes for diagnosis of fungal infections. J. Clin. Microbiol., 33, 2913-2919 (1995)〕に従って、MD-1株の18SrRNA遺伝子のインナー配列560bp(配列番号1)と3'-末端配列434bp(配列番号2)を決定した。これらの塩基配列について、DNA Data Bank of JapanのデータベースをFASTA programを用いて解析した。その結果、登録データには、どの遺伝子領域についても、塩基配列の一致する登録菌株は存在しないことが分かった。そこで相同性の比較を行い、最も近い菌株を検索した。本菌のヌクレオチド配列と高い相同性を示した菌株を下に示す。・インナー配列 菌株 相同性(%) Ceriporiopsis subvermispora 99.643 Termitomyces catilagineus 99.107 Gloeoporus taxicola 98.930 Ceriporia purpurea 98.930・3'-末端配列 菌株 相同性(%) Ceraceomyces serpens 99.539 Phanerochaete chrysosporium 99.309 Phanerochaete subceracea 99.309 Ceriporiopsis subvermispora 99.078 インナー配列及び3'-末端配列において、共に本菌MD-1株と高い相同性を示した菌株は、Ceriporiopsis subvermisporaであった。Ceriporiopsis subvermisporaの3'-末端配列において、MD-1株と配列の異なるヌクレオチドは4つであったが、そのうち2つは対象となるCeriporiopsis subvermisporaの方で決定されていなかった。この2つのヌクレオチドは他に相同性の高かった20株中19株で保存されており、おそらくCeriporiopsis subvermisporaにおいても保存されている領域であると思われる。よって、3'-末端配列においてのMD-1株とCeriporiopsis subvermisporaの実際の相同性は99.539%となる。以上より、MD-1株と、インナー配列及び3'-末端配列の双方において、最も高い相同性を示した菌株はCeriporiopsis subvermisporaであった。 以上の結果から、MD-1株はCeriporiopsis属に属する白色腐朽菌に分類されるものと認められ、Ceriporiopsis subvermispora近縁の新種の菌株であることが分かった。これまでに、Ceriporiopsis subvermisporaの登録菌株がメラニン分解能を有することに関しては全く報告がないのに対し、MD-1株は高いメラニン分解能を有する。MD-1株は、独立行政法人 産業技術総合研究所 特許生物寄託センターに寄託されており、その受託番号はFERM P-19507である。MD-1株は、本菌の増殖に適した市販の培地、例えば市販の麦芽エキス寒天培地などを用いて調製したスラント等に植菌して保存し、メラニン類の分解に供することができる。 本発明の微生物は、例えば人毛メラニンの分解による毛髪の脱色や、カビ等のメラニン汚染物の分解によるカビの脱色・分解などに利用することができる。本発明の微生物を用いたメラニンの分解においては、微生物を利用した公知の方法を適用することができる。例えば、黒カビ汚染物や毛髪メラニンに本発明の微生物を作用させ、都合の良い条件(温度、pH等)に調整する。なお、本発明の微生物はメラニンを分解する酵素と共に過酸化水素を生産するため、メラニンの分解に使用するに際し、過酸化水素又は過酸化水素生成源を添加する必要はない。微生物の接種量、栄養源の種類や添加量、微生物による処理時の温度や湿度、処理対象物のpH等の条件を適宜変えることによって、メラニン類の分解率を変化させることが可能である。 メラニン分解の反応条件としては、pHは2〜8程度が好ましく、温度は5〜40℃程度が好ましい。更には、pHは3〜6程度が好ましく、温度は15〜30℃程度が好ましい。 本発明の微生物を使用してメラニンを分解する場合には、微生物の生育に影響のない範囲で、通常用いられる浸透促進剤、界面活性剤、その他助剤を用いることができる。具体的には、人毛髪メラニンを分解脱色する場合には、通常化粧品に用いられる原料、例えばアニオン、カチオン、ノニオンの各種界面活性剤、香料、各種植物あるいは動物由来のエキス、油分、アルコール、酸化防止剤、キレート剤、pH調整剤、防腐剤、香料等の原料も配合可能である。また、カビ用の漂白剤や洗浄剤として使用する場合には、一般的に住居用洗剤、衣料用洗剤に用いられる原料、例えばアニオン、カチオン、ノニオンの各種界面活性剤、香料、各種植物あるいは動物由来のエキス、プロテアーゼなどの他の汚れ成分除去酵素、油分、アルコール、酸化防止剤、キレート剤、pH調整剤、防腐剤、香料等の原料も配合可能である。実施例1 MD-1株の単離1.塩酸処理による毛髪メラニン(塩酸処理メラニン)の調製 約1cmの長さに切断したヒト毛髪(中国人毛髪)10gに40重量倍の6規定塩酸を加え、窒素雰囲気下で加熱・撹拌し、還流条件下(内温:約107℃)で4時間処理することによりメラニン顆粒を抽出する。メンブレンフィルター(孔径:0.22μm)による濾過・洗浄(脱塩水、アセトン)を行い、減圧乾燥したものを人毛メラニン顆粒とする〔参考文献:S. Ito & K. Fujita, Analytical Biochemistry, 144, p.527(1985)〕。2.メラニン分解酵素生産菌の分離(1)分離源 分離源として、兵庫県、大阪府下の山中より、腐植した木材周辺の土壌サンプル525種を採取し、メラニン分解酵素生産菌の分離源として用いた。(2)分離培地 分離培地として、メラニン-麦芽エキス培地(麦芽エキス2.0g、グルコース2.0g、ポリペプトン0.1g、寒天2.0g、メラニン0.05g、水100g)を用いた。(3)分離方法 土壌1gを0.8%(w/v)NaCl溶液5mLに懸濁し、ボルテクスにかけて10分間静置し、白金耳を用いて上清を各分離培地上に塗抹した。30℃で培養し、ハローを形成する微生物をメラニン分解酵素生産菌とした。(4)MD-1株の取得とメラニンの分解 毛髪メラニン分解酵素生産菌MD-1株を分離した。MD-1株は塩酸処理メラニン、合成メラニン(シグマ社)をともに分解した。図1にMD-1株がメラニン-麦芽エキス培地に含まれる人毛メラニンを脱色分解した結果を示す。 分離した菌株は、麦芽エキス寒天培地(麦芽エキス2.0g、グルコース2.0g、ポリペプトン0.1g、寒天2.0g、水100g)(日水製薬社)を用いて調製したスラント(寒天斜面)に植菌し、これを25℃で培養した。菌体の増殖を確認した後、該スラントを4℃にて保存した。このようにして良好な脱色成績を示す菌株MD-1株を単離した。この菌株は、同寒天平板培地にて、25℃で5〜10日培養することにより、白色の綿状の集落を形成する。参考例1 MD-1株の生産するメラニン分解酵素の生産特性(1)培地及び培養方法 麦芽エキス-グルコース培地(麦芽エキス2.0g、グルコース2.0g、水100mL、pH6.0)を用いて、MD-1株の培養を行った。前培養は、培地7mLにMD-1株を植菌し、30℃で2日間振とうすることによって行った。得られた培養液7mLを、500mLコルベン中の培地60mLに植菌した後、30℃、105rpmの条件下で振とう培養した。培養開始後24時間ごとに2mLの培養液を無菌的にサンプリングした。培養液を遠心分離(27,000×g,15分,4℃)した後、得られた上清中のメラニン分解酵素活性を測定した。(2)酵素活性測定法、タンパク定量方法 メラニン分解酵素活性は、合成メラニン(シグマ社)及び毛髪メラニン(塩酸処理メラニン)を基質として用い、酵素反応後に残存するメラニンを540nmにおける吸光度に基づいて定量することにより測定した。標準活性測定反応液の組成は、0.05%(w/v)メラニン懸濁液100μL、酵素液250μL、50mM乳酸−コハク酸緩衝液(pH4.5)900μL、9mM過酸化水素14μL(合計1.27mL)であった。酵素反応は30℃で行い、14μLのH2O2を添加することによって反応を開始した。反応開始後経時的に540nmにおける吸光度を測定した。酵素単位1unitは、1時間にメラニン由来の540nmにおける吸光度を0.001減少させる酵素量と定義した。また、比活性はタンパク質1mgあたりの酵素活性で示した。タンパク質はLowly法(Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. J. Biol. Chem. 193巻, 265-275頁、1951年)により定量した。標準タンパク質はウシ血清アルブミンを使用した。(3)MD-1株培養によるメラニン分解酵素の生産 培養液中のメラニン分解活性の経時的変化を図2に示す。メラニン分解酵素活性は、培養開始3日後から増加し、6日後に最大活性を示した。参考例2 MD-1株の生産するメラニン分解酵素の精製(1)酵素精製のための培養液の調製 MD-1株の培養は、上で述べた方法により行った。培養液は合計2620mL得た。得られた培養液を吸引ろ過した後、ろ液を遠心分離(27,000×g,15分,4℃)し、その上清を酵素精製に用いた。(2)メラニン分解酵素の精製方法 酵素精製における全ての操作は4℃下で行った。・硫安分画 上で得た上清に、粉末状に砕いた硫安を55%飽和になるように攪拌しながら加えた。30分間攪拌した後、遠心分離(27,000×g,20分,4℃)して得た上清に、さらに硫安を85%飽和となるように加えた。12時間攪拌した後、遠心分離(27,000×g,20分,4℃)した。沈殿したタンパク質を40mLの10mMリン酸ナトリウム-カリウム緩衝液(pH6.0)(以下緩衝液A)に溶解し、1Lの同緩衝液に対して1,2回目は3時間、3回目は12時間透析した(画分1,40mL)。・DE52 celluloseカラムクロマトグラフィー 画分1を緩衝液Aで平衡化したDE52 cellulose(Whatman Chemical Separation,Clifton,USA)を充填したカラム(1.5×17cm)にアプライした。120mLの緩衝液Aでカラムを洗浄した後、0〜0.3M塩化ナトリウムを含む600mLの緩衝液Aを用いてリニアグラジエント法により、流速45mL/hrで酵素を溶出した。各フラクション(3.0mL/tube)の酵素活性及びタンパク質を測定した。高活性画分を集め1Lの緩衝液Aに対して3時間透析を行った(画分2,30mL)。・DEAE-Toyopearl カラムクロマトグラフィー 画分2を緩衝液Aで平衡化したDEAE-Toyopearl 650S(東ソー社)を充填したカラム(1.5×17cm)にアプライした。120mLの緩衝液Aでカラムを洗浄した後、0〜0.2M塩化ナトリウムを含む450mLの緩衝液Aを用いてリニアグラジエント法により、流速45mL/hrで酵素を溶出した。各フラクション(3.0mL/tube)の酵素活性及びタンパク質を測定し、高活性画分を集めた(画分3,15mL)。・Phenyl-Toyoperl カラムクロマトグラフィー 画分3を1Mの硫安を含む緩衝液Aで平衡化したPhenyl-Toyoperl(東ソー社)を充填したカラム(1.0×5.0cm)にアプライした後、1Mの硫安を含む20mLの緩衝液Aを用いて流速45mL/hrで酵素を溶出し、酵素活性及びタンパク質を測定し、高活性画分を集めた(画分4,57mL)。(3)電気泳動方法・ポリアクリルアミドゲル電気泳動 Davisらの方法により、7.5%(w/v)ポリアクリルアミドゲル(pH8.0)、Tris-glycine(pH8.3)の泳動用緩衝液を用いて、2.5mA/tubeの条件で3.0時間泳動した。タンパク質の染色は0.25%(w/v)Coomassie brilliant blue R-250/エタノール-酢酸-水(9:2:9)溶液で1時間行い、エタノール-酢酸-水(25:8:65)溶液に3時間浸漬して脱色後、エタノール-酢酸-水(10:15:175)溶液中に保存した。・SDS-ポリアクリルアミドゲル電気泳動 WeberとOsbornの方法により、7.5%(w/v)ポリアクリルアミドゲル及び0.1%(w/v)SDS-0.1Mリン酸ナトリウム(pH7.2)の泳動緩衝液を用いて、6mA/tubeの条件で3.5時間泳動した。染色及び脱色は、上で述べた方法によった。(4)酵素の精製の結果 本酵素の各精製段階における酵素活性及びタンパク質量を表1に示す。 得られた最終精製酵素標品をポリアクリルアミドゲル電気泳動及びSDS-PAGE電気泳動に供したところ、タンパク質を示す単一のバンドが現れ(図3)、得られた酵素が単一のタンパク質からなることを示した。電気泳動の結果から、本酵素の分子量は、SDS-PAGEで約72,000であった。参考例3 MD-1株の生産するメラニン分解酵素の特性(1)酵素活性に与えるpHの影響 50mM乳酸-コハク酸緩衝液(pH2.5〜5.0)、50mM 酢酸−酢酸ナトリウム緩衝液(pH5.0〜6.0)、50mMリン酸カリウム-ナトリウム緩衝液(pH6.0〜7.5)、50mM Tris-HCl緩衝液(pH7.5〜9.5)を用いて酵素活性(2.3μg使用)を測定したところ、本酵素は、弱アルカリ〜中性〜酸性領域で活性を示し、pH3.5〜4.0において最大活性を示した(図4)。(2)酵素活性に与える温度の影響 標準条件下(pH4.5)で25〜95℃の各温度で酵素活性(2.3μg使用)を測定した結果、本酵素は、約70℃までメラニン分解活性を有しており、50℃付近において最大活性を示した。(3)pH安定性 酵素液(2.3μg)を100mM乳酸-コハク酸緩衝液(pH2.5〜5.0)、100mMリン酸カリウム-ナトリウム緩衝液(pH5.0〜7.5)、100mM Tris-HCl緩衝液(pH7.5〜9.5)、100mM Na2CO3-NaHCO3緩衝液(pH9.5〜11.0)で、4℃、24時間処理した後、残存する酵素活性を測定した。 本酵素は、pH2.5〜8付近まで4℃で24時間安定であり、pH3〜4付近では4℃、24時間処理で80%以上の残存活性を示し、pH3.5付近において最も安定であった。(4)熱安定性 50mM乳酸-コハク酸緩衝液(pH4.5)を用いて、25〜95℃の各温度で10分間加熱処理した。残存するメラニン分解活性を測定した結果、本酵素は、50℃までは80%以上の活性を維持し、60℃まで酵素活性を有していた。参考例4 酵素反応の特性(1)酵素活性に与えるH2O2、金属イオン、各種化合物の影響 H2O2の濃度を変化させ、酵素活性を測定した結果、本酵素は、H2O2の無添加ではメラニン分解活性を全く示さず、過酸化水素はメラニン分解反応に必須の因子であった。調べたH2O2濃度の範囲(0〜2mM)では、添加系で活性を示し、0. mMにおいて最大活性を示した。 各種の金属イオン(1mM)を加えて処理(25℃、10分間)を行い、20倍希釈後の酵素活性を測定した結果、本酵素は、Mn2+のほか、Mg2+、Ni2+、Co2+、Hg2+、Ca2+、Zn2+等の存在下で活性を示し、これら金属にはあまり影響を受けなかった(無添加系の活性に比較して100〜50%)。本酵素は、0〜2.0mMのMn2+濃度ではメラニン分解活性はほとんど増加せず、本酵素はマンガンペルオキシダーゼではないと判断した。また、Fe2+、Ag+、Cu2+で処理した本酵素は著しく阻害された(無添加系の活性に比較して0〜30%)。また、Fe3+で処理した本酵素はメラニンに対する活性を著しく増大させた。 本酵素に対する各種化合物(1mM)の影響について検討した結果、ヨード酢酸(CH2ICOOH)、PCMB(p-クロロメルクリ安息香酸;p-chloromercuribenzoic acid)、DTNB(5,5'-ジチオビス(2-ニトロ安息香酸);5,5'-dithiobis(2-nitrobenzoic acid))、α,α'-ジピリジル(α,α'-Dipyridyl)、N-エチルマレイミド(N-Ethylmaleimide)、EDTA、o-フェナントロリン(o-Phenanthroline)等では無添加の50%以上の活性を示したが、アジ化ナトリウムは本酵素を著しく阻害した(無添加系の20%以下)。(2)基質特異性 本酵素の基質特異性を、ペルオキシダーゼの基質として報告のある物質(2,6-ジメトキシフェノール、グアヤコール、シリングアルダジン)及び各種の色素化合物を対象として調べた。 2,6-ジメトキシフェノール、グアヤコール及びシリングアルダジンに対する酵素活性は、標準活性測定法においてメラニンの代わりにこれら化合物を用い、それぞれの化合物由来反応生産物の極大吸収波長における吸光度の増加を測定することにより酵素活性を求めた。グアヤコール由来の生産物である3,3'-ジメトキシ4,4'-ビフェノキノンの分子吸光係数として5,580(470nm)、2,6-ジメトキシフェノールからの生産物である3,3',5,5'-テトラメトキシ-4,4'-ビフェノキノンの分子吸光係数として49,000(469nm)、シリングアルダジンからの生産物であるテトラメトキシゾ-p-メチレンキノンの分子吸光係数として65,000(525nm)を用いた。酵素活性(単位)は、酵素が1分間に変化させる基質濃度とした。この結果、これらの化合物に対する酵素活性は、2,6-ジメトキシフェノールに対しては7単位、グアヤコールに対しては29単位、シリングアルダジンに対しては47単位と、比較的高い活性を示した。 色素化合物であるローダミン6G、メチルオレンジに対する本酵素の脱色活性は、標準活性測定法においてメラニンの代わりにこれらの色素を用い、それぞれの色素の極大吸収波長における吸光度の減少を測定した。ローダミン6G、メチルオレンジの分子吸光係数はそれぞれ、75,000(527nm)、25,000(470nm)を用いた。この結果、本酵素はこれらの色素化合物に対して脱色活性を示した。(3)動力学的定数の測定 標準活性測定反応液中のメラニンの濃度を変化させ、酵素活性測定を行うことにより、各種メラニンに対する本酵素のKm値をラインウイーバーバークプロット(Lineweaver-Burk plot)から算出した。MD-1株のメラニン分解酵素のKm値を測定した結果、Km〔%(w/v)〕は、合成メラニンに対して6.5×10-4、人毛メラニンに対して1.5×10-3であった。(4)西洋ワサビ由来ペルオキシダーゼのメラニン分解活性との比較 西洋ワサビ由来ペルオキシダーゼ(シグマ社)のメラニンに対する比活性とMD-1株由来のメラニン分解酵素の比活性を比較した。西洋ワサビ由来ペルオキシダーゼのメラニンに対する活性は、標準活性測定法においてMD-1株由来のメラニン分解酵素の代わりに同酵素を用いて測定した。西洋ワサビ由来ペルオキシダーゼは、10μg、30μg、100μgを使用し、MD-1株由来のメラニン分解酵素は10μgを使用した。 両酵素の人毛メラニンに対する比活性を比較すると、MD-1株由来のメラニン分解酵素〔8.2×104(U/mg)〕は、西洋ワサビ由来ペルオキシダーゼ〔1.0×104(U/mg)〕の約8倍以上であった。合成メラニンに対する比活性も、MD-1株由来の酵素が西洋ワサビ由来ペルオキシダーゼの約10倍であった。 過酸化水素を必須の補助因子とし、マンガンを必要とすることなくメラニンを分解する酵素であって、最適pHが6以下であり、pH4.5における人毛又は合成メラニンの分解活性(比活性U/mg)が西洋わさび由来ペルオキシダーゼの2倍以上である酵素を産生する微生物。 担子菌である請求項1記載の微生物。 セリポリオプシス エスピー.(Ceriporiopsis sp.)MD-1株(FERM P-19507)。 メラニンに対し、請求項1〜3のいずれかに記載の微生物を作用させるメラニン分解方法。 メラニンが、人毛メラニン又はカビメラニンである請求項4記載のメラニン分解方法。 【課題】メラニン類に対して高い分解能を有する酵素を産生する微生物、及び該微生物を用いた安全で効率的なメラニン分解方法を提供する。【解決手段】過酸化水素を必須の補助因子とし、マンガンを必要とすることなくメラニンを分解する酵素であって、最適pHが6以下であり、pH4.5における人毛又は合成メラニンの分解活性(比活性U/mg)が西洋わさび由来ペルオキシダーゼの2倍以上である酵素を産生する微生物、及びメラニンに対し当該微生物を作用させるメラニン分解方法。【選択図】なし配列表