生命科学関連特許情報

タイトル:公開特許公報(A)_メチオニンの製造方法
出願番号:2008150901
年次:2009
IPC分類:C07C 319/28,C07C 319/20,C07C 321/14


特許情報キャッシュ

古泉 善行 後藤 晃権 畦見 拓志 JP 2009292796 公開特許公報(A) 20091217 2008150901 20080609 メチオニンの製造方法 住友化学株式会社 000002093 高島 一 100080791 古泉 善行 後藤 晃権 畦見 拓志 C07C 319/28 20060101AFI20091120BHJP C07C 319/20 20060101ALI20091120BHJP C07C 321/14 20060101ALI20091120BHJP JPC07C319/28C07C319/20C07C321/14 4 OL 9 4H006 4H006AA02 4H006AC13 4H006AD11 4H006AD15 4H006BB14 4H006BC10 4H006BC19 4H006BE41 4H006TA04 本発明は、5−[(2−(メチルチオ)エチル)]イミダゾリジン−2,4−ジオンの加水分解反応により、メチオニンを製造する方法に関する〔下記反応式(1)参照〕。メチオニンは、動物用飼料添加剤として有用である。 メチオニンを製造する方法の1つとして、炭酸カリウムや炭酸水素カリウムの如き塩基性カリウム化合物を用いて、塩基性条件下に5−[(2−(メチルチオ)エチル)]イミダゾリジン−2,4−ジオンを加水分解する方法が知られている。この方法では、加水分解後の反応液に二酸化炭素を導入して晶析を行うことにより、メチオニンを結晶として分離、取得することができるが、このメチオニン分離後の母液には、溶解度分のメチオニンが残存しており、また上記塩基性カリウム化合物としてリサイクル可能な炭酸水素カリウムが含まれている。そのため、この母液は、上記加水分解反応にリサイクルするのがよいが、その際、全量をリサイクルすると不純物が蓄積するので、所定の割合でパージする必要がある。そして、このパージされた母液を廃水として処理することは、そこに含まれるメチオニンと炭酸水素カリウムのロスを招き、廃水処理の負担も大きいので、得策ではない。 そこで、上記母液から、メチオニンと炭酸水素カリウムをいわゆる二番晶として回収する方法が、種々報告されている。例えば、特公昭54−9174号公報(特許文献1)には、上記母液をメチルアルコールの如きアルコールやアセトンなどの水溶性溶媒と混合し、該混合液に二酸化炭素を導入して晶析を行うことが開示されている。また、特開昭51−1415号公報(特許文献2)には、上記母液を濃縮し、該濃縮液に二酸化炭素を導入して晶析を行うことが開示されている。さらに、特開平5−320124号公報(特許文献3)には、上記母液をイソプロピルアルコールと混合し、該混合液に二酸化炭素を導入して晶析を行うことが開示されている。さらには、特開2007−63141号公報(特許文献4)には、上記一番晶分離後の母液を濃縮後、165℃で加熱処理し、その後、イソプロピルアルコールと混合し、二酸化炭素を導入して晶析を行うことが開示されている。また、当該文献には、上記二番晶分離後の母液を濃縮し、該濃縮液に二酸化炭素を導入して晶析を行い、三番晶として回収する方法も開示されている。特公昭54−9174号公報特開昭51−1415号公報特開平5−320124号公報特開2007−63141号公報 上記従来の方法では、二番晶分離後の母液を濃縮後、晶析すると、三番晶を分離する際の濾過性が悪く、設備コストが高くなる問題点があった。 本発明の目的は、三番晶における回収を効率的に行い、コスト的に有利な製造方法を提供することにある。 本発明者らは鋭意研究を行った結果、二番晶分離後の母液中に存在するメチオニンジペプチドの量が三番晶の濾過性に影響する、即ち、メチオニンジペプチドの量が多いと、晶析後の三番晶の濾過性が悪くなるという知見を得た。そして、その知見に基づき、二番晶分離後の母液を濃縮後に加熱処理して、メチオニンジペプチドを加水分解によりメチオニンに変換することにより、晶析後の三番晶の濾過性が飛躍的に良好となることを見出し、発明を完成するに至った。 すなわち、本発明は、[1]次の工程(1)ないし(4);(1)反応工程:塩基性カリウム化合物の存在下に5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンを加水分解する工程、(2)第一晶析工程:工程(1)で得られた反応液に二酸化炭素を導入することによりメチオニンを析出させ、得られたスラリーを析出物と母液とに分離する工程、(3)第二晶析工程:工程(2)で得られた母液を濃縮した後、低級アルコールと混合し、該混合液に二酸化炭素を導入することによりメチオニン及び炭酸水素カリウムを析出させ、得られたスラリーを析出物と母液とに分離する工程、(4)加熱工程:工程(3)で得られた母液を濃縮した後、150〜200℃の範囲で加熱処理する工程、および(5)第三晶析工程:工程(4)で加熱処理した後の母液に二酸化炭素を導入することによりメチオニン及び炭酸水素カリウムを析出させ、得られたスラリーを析出物と母液とに分離する工程、を包含することを特徴とするメチオニンの製造方法;[2]工程(3)で使用される低級アルコールが、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール及びt−ブチルアルコールから選ばれる、上記[1]に記載の方法;[3]工程(4)において、加熱処理を0.3〜10時間の範囲で行う、上記[1]または[2]に記載の方法;[4]工程(5)において、ポリビニルアルコールの存在下にメチオニン及び炭酸水素カリウムを析出させる、上記[1]〜[3]のいずれかに記載の方法;を提供する。 本発明によれば、三番晶を分離する際の濾過性が良好となるので、三番晶の回収を効率的に行え、従って、メチオニンをコスト的に有利に製造することができる。 本発明では、5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンを原料に用い、これを塩基性カリウム化合物の存在下に加水分解することにより、メチオニンをカリウム塩として含有する反応液を得る〔反応工程(1)〕。原料の5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンは、例えば、2−ヒドロキシ−4−メチルチオブタンニトリルを、アンモニア及び二酸化炭素と、又は炭酸アンモニウムと反応させることにより、調製することができる〔下記反応式(2)又は(3)参照〕。 塩基性カリウム化合物としては、例えば、水酸化カリウム、炭酸カリウム、炭酸水素カリウムなどが挙げられ、必要に応じてそれらの2種以上を用いることもできる。塩基性カリウム化合物の使用量は、5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオン1当量に対し、カリウムとして、通常2〜10当量、好ましくは3〜6当量である。また、水の使用量は、5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンに対し、通常2〜20重量倍である。 加水分解反応は、ゲージ圧力で0.5〜1MPa程度の加圧下に、150〜200℃程度に加熱して行うのがよい。反応時間は通常10分〜24時間である。 こうして得られる加水分解反応液からメチオニンを取り出すため、該反応液に二酸化炭素を導入して晶析を行い、得られたスラリーを、濾過やデカンテーションなどで析出物と母液とに分離することにより、析出したメチオニンを一番晶として取得する〔第一晶析工程(2)〕。 二酸化炭素の導入により反応液に二酸化炭素が吸収され、メチオニンのカリウム塩が遊離のメチオニンとなって析出する。 二酸化炭素の導入は、ゲージ圧力で通常0.1〜1MPa、好ましくは0.2〜0.5MPaの加圧下で行うのがよい。 晶析温度は、通常0〜50℃、好ましくは10〜30℃である。また、晶析時間は、二酸化炭素が加水分解反応液に飽和して、メチオニンが十分に析出するまでの時間を目安にすればよいが、通常30分〜24時間である。 分離されたメチオニンは、必要に応じて、洗浄やpH調整などを行った後、乾燥することにより製品とすればよい。この乾燥は、微減圧下に、50〜120℃程度に加熱して行うのがよく、乾燥時間は通常10分〜24時間である。 メチオニン分離後の母液(以下、この母液を「一番晶母液」という)には、溶解度分のメチオニンが残存しており、また上記塩基性カリウム化合物としてリサイクル可能な炭酸水素カリウムが含まれている。このため、一番晶母液は、工程(1)の加水分解反応にリサイクルするのが望ましいが、一方で、原料中の不純物や加水分解時の副反応に起因する不純物、例えば、グリシン、アラニンの如きメチオニン以外のアミノ酸や、着色成分なども含まれているので、リサイクルにより、これら不純物が加水分解反応に持ち込まれることになる。そこで、一番晶母液のリサイクルは、全量ではなく、不純物が蓄積しない範囲で行う必要があり、その割合は、一番晶母液の全量に対し通常50〜90重量%、好ましくは70〜90重量%である。 一番晶母液のリサイクルは、該母液を濃縮し、この濃縮液をリサイクル液として行うのが望ましい。この濃縮により、一番晶母液から二酸化炭素を留去することができ、塩基性が高められた加水分解反応に有利なリサイクル液を得ることができる。また、この濃縮を100〜140℃の高温で行うことにより、一番晶母液中の炭酸水素カリウムが炭酸カリウムに変換される反応(2KHCO3→K2CO3+H2O+CO2)が促進され、さらに塩基性が高められた加水分解反応に有利なリサイクル液を得ることができる。この濃縮は、常圧下、減圧下又は加圧下に行うことができるが、上記の如く高温で行うためには、加圧条件を採用するのが有効である。濃縮率は、通常1.2〜4倍、好ましくは1.5〜3.5倍であり、ここで、濃縮率とは、濃縮後の液重量に対する濃縮前の液重量の割合(濃縮前の液重量/濃縮後の液重量)を意味し、以下も同様である。 リサイクルされなかった分の一番晶母液(濃縮された母液)は、そこからメチオニンと炭酸水素カリウムを二番晶として回収すべく、晶析に付される。本発明では、この晶析を、濃縮された一番晶母液を低級アルコールと混合し、該混合液に二酸化炭素を導入することにより行い、得られたスラリーを濾過やデカンテーションなどで析出物と母液とに分離することにより、析出したメチオニンと炭酸水素カリウムを二番晶として回収する〔第二晶析工程(3)〕。なお、濃縮された一番晶母液をリサイクルすることなく、その全量をこの晶析に付すこともできる。 低級アルコールとしては、通常、アルキル基の炭素数が1〜5のアルキルアルコールが用いられるが、中でも、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、t−ブチルアルコールの如き、水と任意の割合で混和しうるものが好ましく、特にイソプロピルアルコールが好ましい。低級アルコールの使用量は、晶析に付される一番晶母液に対し、通常0.05〜5重量倍、好ましくは0.1〜2重量倍である。なお、一番晶母液と低級アルコールとの混合は、二酸化炭素の導入の前に行ってもよいし、二酸化炭素の導入と同時に行ってもよい。 第二晶析に付される一番晶母液は、リサイクルされる一番晶母液と同様、一番晶母液を濃縮する。この濃縮により、二番晶の回収率を高めることができる。この濃縮は、リサイクルされる一番晶母液の濃縮と同様の条件で行うことができ、一番晶母液の全量を濃縮した後、リサイクル用と第二晶析用に分けてもよい。 一番晶母液の濃縮では、母液中の塩基性が上昇して、第一晶析工程で変換された遊離のメチオニンがメチオニンのカリウム塩に戻ってしまう。よって、第二晶析工程でも、濃縮後の一番晶母液と低級アルコールの混合液に二酸化炭素を導入することにより、メチオニンのカリウム塩を再び遊離のメチオニンに変換する。 また、濃縮後に加熱処理することが好ましく、その中に含まれるメチオニンジペプチド(メチオニン2分子の脱水縮合物)の加水分解によりメチオニンの再生が促進される。この加熱処理は、ゲージ圧力で0.5〜2MPa程度の加圧下に、140〜180℃程度の温度で行うのがよく、熱処理時間は通常10分〜24時間である。 二酸化炭素の導入は、第一晶析工程と同様、ゲージ圧力で通常0.1〜1MPa、好ましくは0.2〜0.5MPaの加圧下で行うのがよい。 晶析温度は、通常0〜50℃、好ましくは5〜20℃である。また、晶析時間は、二酸化炭素が上記混合液に飽和して、メチオニンと炭酸水素カリウムが十分に析出するまでの時間を目安にすればよいが、通常10分〜24時間である。 回収された二番晶(メチオニンと炭酸水素カリウムの混合物)は、工程(1)の加水分解反応にリサイクルするのがよく、その際、リサイクル用の一番晶母液に溶解してリサイクルすると、操作性の点で好ましい。 二番晶分離後の母液(以下、この母液を「二番晶母液」という)には、未だメチオニンと炭酸水素カリウムが含まれている。そこで、本発明では、この二番晶母液から、さらに三番晶としてメチオニンと炭酸水素カリウムを回収すべく、二番晶母液を濃縮した後、加熱処理[加熱工程(4)]し、該加熱処理した後の液に二酸化炭素を導入して晶析を行い、得られたスラリーを濾過やデカンテーションなどで析出物と母液とに分離することにより、析出したメチオニンと炭酸水素カリウムを三番晶として回収する〔第三晶析工程(5)〕。 二番晶母液の濃縮により、三番晶の回収率を高めることができる。この濃縮は、リサイクルされる一番晶母液の濃縮と同様の条件で行うことができる。 また、濃縮後の加熱処理により、その中に含まれるメチオニンジペプチドの加水分解によりメチオニンの再生が促進される。この加熱処理は、ゲージ圧力で0.5〜2MPa程度の加圧下に、150〜200℃、好ましくは160〜180℃の温度で行う。熱処理時間は、好ましくは0.3〜10時間、より好ましくは0.5〜5時間である。 この加熱処理は、メチオニンに対するメチオニンジペプチドの比が、好ましくは5〜50重量%、より好ましくは5〜30重量%まで行うのがよい。 従来(例えば、特許文献4)では、二番晶母液の濃縮後、そのまま二酸化炭素を導入して晶析を行い、得られたスラリーを析出物と母液とに分離することにより三番晶を得ていた。しかし、三番晶の分離の際、三番晶の濾過性が非常に悪いという問題があった。本発明者らは、その原因について鋭意検討したところ、二番晶母液中に存在するメチオニンジペプチドの量に関係することが判明した。 一方で、一番晶母液の濃縮後、加熱処理せずにそのまま二酸化炭素を導入して晶析しても、二番晶の濾過性には問題がないことも合わせて判明しており、これは、一番晶母液よりも二番晶母液の方がメチオニンジペプチドの含有量が多く、一番晶母液中のメチオニンジペプチドの含有量では、濾過性に影響を与えないものと推察される。 また、二番晶母液の濃縮でも、母液中の塩基性が上昇して、第二晶析工程で変換された遊離のメチオニンがメチオニンのカリウム塩に戻ってしまう。よって、第三晶析工程でも、濃縮および熱処理後の二番晶母液に二酸化炭素を導入することにより、メチオニンのカリウム塩を再び遊離のメチオニンに変換する。 二酸化炭素の導入は、第一晶析工程および第二晶析工程と同様、ゲージ圧力で通常0.1〜1MPa、好ましくは0.2〜0.5MPaの加圧下で行うのがよい。 晶析温度は通常0〜50℃、好ましくは5〜30℃である。また、晶析時間は、二酸化炭素が上記加熱処理した後の液に飽和して、メチオニンと炭酸水素カリウムが十分に析出するまでの時間を目安にすればよいが、通常10分〜24時間である。 第三晶析は、例えば特開平4−169570号公報に示される如く、ポリビニルアルコールの存在下に行うのが好ましい。これにより、三番晶を脱液性の良い形状で析出させることができ、続く固液分離の際に母液が三番晶中に残存し難くなるので、回収される三番晶中の不純物含量を低減することができる。ポリビニルアルコールの使用量は、二番晶母液の加熱処理した後の液に対し、通常100〜5000重量ppm、好ましくは200〜3000重量ppmである。なお、第一晶析や第二晶析もポリビニルアルコールの存在下に行うことができ、特に第一晶析をポリビニルアルコールの存在下に行うと、製品粉体特性の良いメチオニンが得られて、好ましい。 回収された三番晶(メチオニンと炭酸水素カリウムの混合物)は、二番晶と同様、工程(1)の加水分解反応にリサイクルするのがよい。なお、以上の工程(1)〜(5)は、全てを連続式で行ってもよいし、全ての回分式で行ってもよく、また、一部を連続式で行い、一部を回分式で行ってもよい。 次に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。例中、濃度ないし使用量を表す%及び部は、特記ない限り重量基準である。実施例1〔反応工程(1)〕 5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンを18.7%の濃度で含む水溶液を毎時100部、水酸化カリウムを毎時1.0部、別途調製した一番晶母液の一次濃縮液(メチオニン濃度6.0%であり、カリウム濃度13.5%)を毎時67.6部、及び別途調製した二番晶を含む溶液(メチオニン濃度7.6%、カリウム濃度18.2%、二番晶ウエットケーキを一番晶母液濃縮液に溶解後濃縮したもの)を毎時25.8部の割合で反応器に導入しながら、ゲージ圧力0.88MPaの加圧下に173〜178℃にて滞留時間1時間で加水分解反応を行った。〔第一晶析工程(2)〕 上記の加水分解反応で得られた反応液(毎時133.1部)を毎時60.7部の水及び毎時0.023部のポリビニルアルコールと混合して晶析器に導入し、ゲージ圧力0.3MPaの二酸化炭素の加圧下に20℃にて晶析を行い、メチオニンを析出させた。得られたスラリーを濾過し、濾残を水洗した後、微減圧下に85〜105℃にて乾燥することにより、毎時15.6部のメチオニン(純度99.6%、収率97%)を得た。また、濾液として、毎時184.0部の一番晶母液を回収した。 上記の一番晶母液(毎時184.0部)を濃縮器に導入し、ゲージ圧力0.2MPaの加圧下に115℃、次いで140℃にて濃縮することにより、毎時106.4部の一次濃縮液を得た(一次濃縮率1.7倍)。この一次濃縮液を分析した結果、メチオニンの濃度は6.0%であり、カリウムの濃度は13.5%であり、メチオニンに対するメチオニンジペプチドの比は36.5%であった。 上記の一番晶母液の一次濃縮液(毎時106.4部)のうち、毎時67.6部は、上述のとおり加水分解反応にリサイクルした。また、毎時18.5部は、加熱器に導入し、ゲージ圧力1MPaの加圧下に165℃にて滞留時間1時間で熱処理を行った後、濃縮器に導入し、ゲージ圧力0.2MPaの加圧下に135℃にて濃縮することにより、毎時12.3部の二次濃縮液を得た(二次濃縮率1.5倍、一次二次通算濃縮率2.6倍)。また、残りの毎時20.3部は、後述の二番晶ウェットケーキの溶解に使用した。〔第二晶析工程(3)〕 上記の一番晶母液の二次濃縮液(毎時12.3部)を毎時3.3部のイソプロピルアルコールと混合して晶析器に導入し、ゲージ圧力0.3MPaの二酸化炭素の加圧下に12〜16℃にて晶析を行った。得られたスラリーを濾過することにより、濾残として、毎時7.8部の二番晶ウェットケーキを得た。また、濾液として、毎時9.1部の二番晶母液を回収した。 上記の二番晶ウェットケーキ(毎時7.8部)は、前述の一番晶母液の一次濃縮液の残り(毎時20.3部)に溶解して濃縮器に導入し、常圧下に80℃にて濃縮することにより、二番晶に含まれていたイソプロピルアルコールを留去し、毎時25.8部の二番晶の溶液を得た。この二番晶の溶液を分析した結果、メチオニンの濃度は7.6%であり、カリウムの濃度は18.2%であった。この二番晶の溶液(毎時25.8部)は、上述のとおり加水分解反応にリサイクルした。〔加熱工程(4)および第三晶析工程(5)〕 上記の二番晶母液(毎時9.1部)を濃縮器に導入し、常圧下に80〜110℃にて濃縮することにより、イソプロピルアルコールを留去し、毎時6.0部の一次濃縮液を得た(一次濃縮率1.5倍)。この一次濃縮液を分析した結果、メチオニンの濃度は3.14%であり、カリウムの濃度は7.25%であり、メチオニンに対するメチオニンジペプチドの比は102.9%であった。 上記の二番晶母液の一次濃縮液から一部を取って濃縮器に導入し、絶対圧力60mmHg(8kPa)の減圧下に60℃にて、二次濃縮率2.3倍(一次二次通算濃縮率3.5倍)になるまで濃縮した。この二次濃縮液を分析した結果、グリシンの濃度は0.69%であり、アラニンの濃度は1.07%であった。 上記二次濃縮液を加熱器に入れ、180℃で4時間加熱を行った。加熱後の液を分析した結果、メチオニンの濃度は10.79%、メチオニンジペプチドの濃度は1.93%、カリウム濃度は12.2%であり、メチオニンに対するメチオニンジペプチドの比は17.9%であった。 上記加熱液を晶析器に入れ、ゲージ圧力0.3MPaの二酸化炭素の加圧下、ポリビニルアルコールを500重量ppm添加して15℃にて晶析を行い、メチオニンと炭酸水素カリウムを析出させた。得られたスラリーを濾過ゲージ圧0.3MPaで加圧濾過した。そのときの以下の方法により測定したウェットケーキの濾過比抵抗は0.64×1010m/kgであった。比較例1 実施例1の二番晶母液の二次濃縮液を晶析器に入れ、ゲージ圧力0.3MPaの二酸化炭素の加圧下に15℃にて晶析を行い、メチオニンと炭酸水素カリウムを析出させた。得られたスラリーを濾過ゲージ圧0.3MPaで加圧濾過した。そのときのウェットケーキの濾過比抵抗は2.0×1010m/kgであった。参考例1 実施例1の一番晶母液の一次濃縮液(毎時18.5部)をゲージ圧力0.2MPaの加圧下に135℃にて濃縮することにより、毎時12.3部の二次濃縮液を得た(二次濃縮率1.5倍、一次二次通算濃縮率2.6倍)。二次濃縮液(毎時12.3部)を毎時3.3部のイソプロピルアルコールと混合して晶析器に導入し、ゲージ圧力0.3MPaの二酸化炭素の加圧下に12〜16℃にて晶析を行った。得られたスラリーを濾過ゲージ圧0.3MPaで加圧濾過した。そのときの以下の方法により測定したウェットケーキの濾過比抵抗は0.55×1010m/kgであった。濾過比抵抗の測定 以下の方法で濾過速度を測定し、濾過比抵抗を算出した。 耐圧容器にスラリーの液を入れ、密閉し、所定圧力まで加圧した後、底抜き弁を開け、濾過を開始した。所定時間ごとの濾液量の重量を測定し、濾過速度を算出した。濾液が出なくなったところで終了し、脱圧した。容器を開け、ウェットケーキの濾過厚みを測定した。ウェットケーキを取り出し、ウェットケーキの重量および含水率を測定した(カールフィッシャーで水分を測定)。 濾過速度、濾過面積、濾液粘度、ウェットケーキ重量、含水率、濾過厚み、濾過圧力のデータから下記の式を用いて濾過比抵抗値を算出した。K=2・△P・A2・gc/(μ・αm・C)V0=Rm・A/(αm・C)θ/V:濾過速度の逆数ΔP:圧力差(=濾過圧力)A:濾過面積gc:重力加速度αm:濾過比抵抗C:固形分濃度Rm:濾布抵抗 本発明によれば、三番晶を分離する際の濾過性が良好となるので、三番晶の回収を効率的に行え、従って、メチオニンをコスト的に有利に製造することができる。 次の工程(1)ないし(4);(1)反応工程:塩基性カリウム化合物の存在下に5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンを加水分解する工程、(2)第一晶析工程:工程(1)で得られた反応液に二酸化炭素を導入することによりメチオニンを析出させ、得られたスラリーを析出物と母液とに分離する工程、(3)第二晶析工程:工程(2)で得られた母液を濃縮した後、低級アルコールと混合し、該混合液に二酸化炭素を導入することによりメチオニン及び炭酸水素カリウムを析出させ、得られたスラリーを析出物と母液とに分離する工程、(4)加熱工程:工程(3)で得られた母液を濃縮した後、150〜200℃の範囲で加熱処理する工程、および(5)第三晶析工程:工程(4)で加熱処理した後の母液に二酸化炭素を導入することによりメチオニン及び炭酸水素カリウムを析出させ、得られたスラリーを析出物と母液とに分離する工程、を包含することを特徴とするメチオニンの製造方法。 工程(3)で使用される低級アルコールが、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール及びt−ブチルアルコールから選ばれる、請求項1に記載の方法。 工程(4)において、加熱処理を0.3〜10時間の範囲で行う、請求項1または2に記載の方法。 工程(5)において、ポリビニルアルコールの存在下にメチオニン及び炭酸水素カリウムを析出させる、請求項1〜3のいずれかに記載の方法。 【課題】コスト的に有利に、また廃水処理の点でも有利に、メチオニンを製造する。【解決手段】次の工程(1)ないし(4);(1)反応工程:塩基性カリウム化合物の存在下に5−[2−(メチルチオ)エチル]イミダゾリジン−2,4−ジオンを加水分解する工程、(2)第一晶析工程:工程(1)で得られた反応液に二酸化炭素を導入することによりメチオニンを析出させ、得られたスラリーを析出物と母液とに分離する工程、(3)第二晶析工程:工程(2)で得られた母液を濃縮した後、低級アルコールと混合し、該混合液に二酸化炭素を導入することによりメチオニン及び炭酸水素カリウムを析出させ、得られたスラリーを析出物と母液とに分離する工程、(4)加熱工程:工程(3)で得られた母液を濃縮した後、150〜200℃の範囲で加熱処理する工程、および(5)第三晶析工程:工程(4)で加熱処理した後の母液に二酸化炭素を導入することによりメチオニン及び炭酸水素カリウムを析出させ、得られたスラリーを析出物と母液とに分離する工程、を包含することを特徴とするメチオニンの製造方法。【選択図】なし


ページのトップへ戻る

生命科学データベース横断検索へ戻る