タイトル: | 公開特許公報(A)_測定デバイス及びそれを用いた測定方法 |
出願番号: | 2008129379 |
年次: | 2009 |
IPC分類: | G01N 27/327,G01N 27/06,G01N 27/416 |
田中 真司 中南 貴裕 JP 2009276275 公開特許公報(A) 20091126 2008129379 20080516 測定デバイス及びそれを用いた測定方法 パナソニック株式会社 000005821 岩橋 文雄 100097445 内藤 浩樹 100109667 永野 大介 100109151 田中 真司 中南 貴裕 G01N 27/327 20060101AFI20091030BHJP G01N 27/06 20060101ALI20091030BHJP G01N 27/416 20060101ALI20091030BHJP JPG01N27/30 351G01N27/06 AG01N27/46 336J 8 1 OL 20 2G060 2G060AA07 2G060AC05 2G060AC09 2G060AF02 2G060AF03 2G060AF08 2G060AG08 2G060HC01 本発明は、試料液の導電率及び該試料液中に含まれる少なくとも1つの成分の濃度を測定することが可能な測定デバイス及びそれを用いた測定方法に関するものである。 従来、2つ以上の電極を含む電極系を用いて、試料液の導電率や、試料液中に含まれる成分の濃度を測定することが行われている(例えば、特許文献1及び2参照)。 例えば、特許文献1には、一対の電極が設けられたセルを備える電気伝導度計を用いて、セル内に導入された試料液の導電率を測定し、測定された導電率を塩分濃度に換算する測定方法が開示されている。 特許文献2には、基板、基板上に配置された測定極及び対極を含む電極系、並びに電極系上に配置された酵素及び電子伝達体を含む試薬層を備えるセンサを用いて、血液中に含まれるグルコースの濃度を測定することが開示されている。 また、従来、少なくとも1つの電極系を用いて、単一の試料液について複数項目の測定を行うことが提案されている(例えば、特許文献2、3及び4参照)。 上記の特許文献2には、単一の電極系を用いて、試料液である血液がセンサに導入されたこと、すなわち試料液の存在を検知すること、及び同じ電極系を用いて、血液中に含まれるグルコースの濃度を測定することが開示されている。具体的には、血液が毛管現象により電極系に導入される工程、測定極と対極との間における抵抗値の変化を検出することにより、血液が電極系に導入されたことを検知する工程、酵素と血液との反応が進行するのを待つ工程、測定極と対極との間に流れる酸化電流を測定する工程、及び測定された電流値をグルコース濃度に換算する工程を含む測定方法が開示されている。 特許文献3には、それぞれ測定極及び対極を有する主電極系と副電極系とを備えるセンサが開示されている。特許文献3に記載のセンサにおいては、絶縁性の基板、スペーサ及びカバーを組み合わせることにより、空間部と、空間部の一方の端部と連通する試料供給孔と、空間部の他方の端部に連通する空気孔とが形成されている。試料供給孔から導入された試料液が主電極系よりも先に副電極系に導入されるように、空間部において、主電極系よりも副電極系の方が試料供給孔に近くなるように、主電極系及び副電極系が配置されている。具体的には、酵素及び電子伝達体を含む試薬層が主電極上のみに設けられたセンサを用いて、試料供給孔から空間部に試料液が導入される工程、副電極系において試料液中に含まれるアスコルビン酸の濃度の測定を行う工程、及び主電極系において試料液中に含まれるグルコースの濃度の測定を行う工程を含む測定方法が開示されている。また、ヘマトクリットの影響を低減してグルコース濃度を高精度に測定するために、同じく酵素及び電子伝達体を含む試薬層が主電極上のみに設けられたセンサを用いて、試料供給孔から空間部に試料液が導入される工程、副電極系に試料液が導入された時点で副電極系においてインピーダンスの変化を検出する工程、主電極系に試料液が導入された時点で主電極系においてインピーダンスの変化を検出する工程、主電極系における測定極と対極との間に流れる酸化電流を測定する工程、及び測定された電流値と、副電極系と主電極系とにおいてインピーダンス変化を検知した時間の差とに基づきグルコース濃度を求める工程を含む測定方法が開示されている。 特許文献4には、図11及び段落(0086)〜(0087)において、基体を囲む複数の外表面のうち、1つの外表面に設けられた1対の電極から構成される第1の電極系と、他の外表面に設けられた1対の電極から構成される第2の電極系とを備える測定デバイスが開示されている。具体的には、第1の電極系を用いて導電率を検出することにより塩濃度を測定し、第2の電極系を用いて尿糖またはクレアチニンを測定する例が開示されている。特開平1−203952号公報特開平4−357452号公報特開平5−340915号公報国際公開第2007/049607号パンフレット しかしながら、上記従来の電極系を用いた複数項目の測定方法には、以下の問題があった。 まず、特許文献2に記載の方法では、毛管現象により導入された血液が電極系に到達すると、電極系上に配置された試薬層が血液中に溶解することにより、試薬層に含まれる電子伝達体等の成分が血液中において電離する。このため、電極系により検出される抵抗値は、試料液である血液の抵抗値よりも低い値となってしまう。 特許文献3に記載の方法では、主電極系と副電極系という2つの電極系が必要であるため、デバイス構造が複雑である。 特許文献4に記載の方法では、第1の電極系と第2の電極系が必要であるため、特許文献3に記載の方法と同様に、デバイス構造が複雑である。 そこで本発明は上記従来の問題点に鑑み、簡易な構成であって、試料液の導電率及び該試料液に含まれる少なくとも1つの成分の濃度を精度良く測定することが可能な測定デバイス及びそれを用いた測定方法を提供することを目的とする。 上記従来の問題点を解決するために、本発明の測定デバイスは、試料液導入孔として機能する第1の開口及び空気孔として機能する第2の開口と連通する空間部を有する基体、前記空間部を囲む前記基体の内面のうち第1の面上に配置され、少なくとも2つの電極を含み、前記空間部に導入された試料液の導電率及び前記試料液中に含まれる少なくとも1つの成分の濃度を測定するための電極系、並びに前記第1の面上であって、前記電極系よりも前記第2の開口に近い位置に配置された、前記成分を測定するための試薬を備える。 また、本発明の測定方法は、上記測定デバイスを用い、 (A)前記測定デバイスの前記第1の開口を通して、前記空間部に前記試料液を導入する工程、 (B)前記電極系に前記試料液が到達した後、前記電極系を用いて前記試料液の導電率を計測する工程、 (C)前記工程Bの後、前記試料液中に溶解した前記試薬が前記電極系まで拡散するのを待つ工程、 (D)前記工程Cの後、前記電極系に含まれる電極のうち少なくとも2つの電極間に電圧を印加する工程、 (E)前記工程Dにおいて電圧が印加された前記2つの電極間に流れる電流を計測する工程、及び (F)前記工程Eにおいて計測された電流に基づき、前記試料液中に含まれる前記成分の濃度を求める工程を含む。 本発明によれば、簡易な構成により、試料液の導電率及び該試料液に含まれる少なくとも1つの成分の濃度を精度良く測定することができる。 本発明の測定デバイスは、電極系と、試料液中に含まれる成分を測定するための試薬とが、空間を介して離れた位置に配置されていることを特徴とする。 より具体的には、本発明の測定デバイスにおいて、電極系が配置された面上に、試料液中に含まれる成分を測定するための試薬が配置されており、試薬よりも電極系の方が試料液導入孔に近い位置に配置されている。 本発明の測定デバイスは、試料液導入孔として機能する第1の開口及び空気孔として機能する第2の開口と連通する空間部を有する基体、前記空間部を囲む前記基体の内面のうち第1の面上に配置され、少なくとも2つの電極を含み、前記空間部に導入された試料液の導電率及び前記試料液中に含まれる少なくとも1つの成分の濃度を測定するための電極系、並びに前記第1の面上であって、前記電極系よりも前記第2の開口に近い位置に配置された、前記成分を測定するための試薬を備える。 この構成によると、試料液導入孔として機能する第1の開口から空間部に導入された試料液は、試薬と接触する前にまず電極系と接触する。試料液が電極系に到達した時点では、電極系に接している試料液中には試薬が溶解していないので、試薬が試料液の導電率の値に影響を与えることがない。そこで、試料液が電極系に到達した時点で、まず、電極系を用いて試料液の導電率を測定すると、試料液の導電率を精度良く測定することができる。次に、試料液が試薬の配置された位置まで到達し、さらに試料液中に溶解した試薬が試料液中を拡散して電極系に到達した後に、導電率の測定に用いた電極系と同じ電極系を用いて、試料液中に含まれる測定対象成分の濃度を測定する。このようにすると、単一の電極系を用いて、試料液の導電率及び試料液中に含まれる測定対象成分の濃度を精度良く測定することができる。 本発明において、基体の材料としては、ガラス、セラミック、ゴム、エボナイト、プラスチックなどの絶縁性の材料を用いることができる。 また本発明において、電極の材料としては、金、白金、パラジウム、銅などを用いることができる。 電極系に含まれる電極の数は、少なくとも2つであればよく、3つ以上であってもよい。ここで、電極系に含まれる電極の数が4つであることが好ましい。 本発明において、試料液としては、液体であれば特に限定なく用いることができる。試料液が血液、尿などの生体試料であることが好ましい。 本発明において、試料液中に含まれる成分を測定するための試薬としては、酸化還元物質、酵素、抗体等が挙げられる。ここで、試薬が酸化還元物質を含み、前記酸化還元物質は前記成分と反応することにより還元され、かつ還元された前記酸化還元物質は前記電極系において酸化されることが好ましい。 本発明において、酸化還元物質としては、フェリシアン化カリウム等のフェリシアン化物、フェナジンメトサルフェート等のフェナジン系化合物、p−ベンゾキノン、メチレンブルー、フェロセン誘導体等を用いることができる。この中で、酸化還元物質がフェリシアン化カリウムであることが好ましい。フェリシアン化カリウムはクレアチニンと直接反応してクレアチニンを酸化する機能を有するので、酸化還元物質としてフェリシアン化カリウムを用いると、試料液中に含まれるクレアチニンの濃度を測定することができる。 試料液が尿の場合、本発明の測定デバイスを用いて尿中の導電率を計測することにより、尿中の電解質濃度を求めることができる。さらに本発明の測定デバイスを用いて尿中のクレアチニン濃度を計測し、求められた尿中の電解質濃度を計測されたクレアチニン濃度を用いて補正することにより、一日の塩分摂取量を推定することが可能となる。一日の塩分摂取量を定量的に測定することは、高血圧症の予防に有用である。 本発明において用いる試薬は、複数種類の酸化還元物質を含んでいてもよい。 また、本発明の測定デバイスが、前記第1の面上に、前記電極系に含まれる前記少なくとも2つの電極の各々と接続する少なくとも2つのリードをさらに備え、前記電極と前記リードとが、前記電極の前記第1の開口側の端部において接続していることが好ましい。 この構成によると、第1の面上において、試薬と電極系との間にリードを設ける必要がなくなるため、試料液中に溶解した試薬が、リードに妨害されることなく円滑に電極系まで拡散することができる。そのため、試料液に含まれる成分の濃度の測定精度をさらに向上させることができる。 本発明の測定方法は、上記測定デバイスを用い、 (A)前記測定デバイスの前記第1の開口を通して、前記空間部に前記試料液を導入する工程、 (B)前記電極系に前記試料液が到達した後、前記電極系を用いて前記試料液の導電率を計測する工程、 (C)前記工程Bの後、前記試料液中に溶解した前記試薬が前記電極系まで拡散するのを待つ工程、 (D)前記工程Cの後、前記電極系に含まれる電極のうち少なくとも2つの電極間に電圧を印加する工程、 (E)前記工程Dにおいて電圧が印加された前記2つの電極間に流れる電流を計測する工程、及び (F)前記工程Eにおいて計測された電流に基づき、前記試料液中に含まれる前記成分の濃度を求める工程を含む。 この方法によると、工程Bにおいては、電極系に接している試料液中には試薬が溶解していないので、試料液の導電率を精度良く測定することができる。次に、工程Dにおいては、試料液中に溶解した試薬が試料液中を拡散して電極系に到達しているので、導電率の測定に用いた電極系と同じ電極系を用いて、試料液中に含まれる測定対象成分の濃度を測定することができる。したがって、本発明の測定方法により、単一の電極系を用いて、試料液の導電率及び試料液中に含まれる測定対象成分の濃度を精度良く測定することができる。 工程Fにおいては、工程Eにおいて計測された電流値に基づいて、試料液中に含まれる前記成分の濃度を求めてもよい。また、工程Eにおいて計測された電流値の積分である電気量に基づいて、試料液中に含まれる前記成分の濃度を求めてもよい。 また、本発明の測定方法は、 (G)前記工程Bの前に、前記電極系を用いて、前記電極系に前記試料液が到達したことを検知する工程をさらに含むことが好ましい。 このようにすると、試料液が電極系に到達した時刻を正確に知ることができるので、工程Bにおける試料液の導電率の計測をいつまでに完了すれば良いか、前記工程Eにおける前記2つの電極間に流れる電流の計測をいつ行えば良いかなどを正確に知ることができる。 工程Gにおける試料液の検知は、例えば、電極系に含まれる2つの電極間の抵抗の変化を検出することにより行うことができる。試料液が電極系に到達すると、電極系に含まれる2つの電極間の抵抗が低下するので、2つの電極間の抵抗の変化を検出することにより、電極系に試料液が到達したことを検知することができる。2つの電極間の抵抗の変化は、例えば、2つの電極間に直流電圧を印加した状態において、2つの電極間に流れる電流の変化を計測することにより検出することができる。 試料液中に試薬が溶解することにより生じたイオン種が時間tの間に拡散する距離δは、下記(数1)で表される。ただし、Dはイオン種の拡散係数、πは円周率を表す。 ここで、電極系の試薬側の端部と試薬の電極系側の端部との間隔をLとすると、イオン種の拡散距離δがLに等しくなった時点で、試料液中に試薬が溶解することにより生じたイオン種が電極系に到達することになる。そこで、δ=Lになるときの時間tをTとすると、Tは下記式(数2)により表される。 試料液中に試薬が溶解することにより生じた複数のイオン種のうち、最も拡散係数の大きいイオン種が最初に電極系に到達する。最も拡散係数の大きいイオン種が試薬の設けられた位置から電極系まで到達するのに要する時間をT1とすると、T1は下記式(数3)により表される。 ここで、D1は最も拡散係数の大きいイオン種の拡散係数を表す。 本発明の測定方法において、工程Gにおいて電極系に試料液が到達したことが検知されてから上記式(数3)で表わされる時間T1が経過するまでに、工程Bにおいて電極系を用いて試料液の導電率が計測されることが好ましい。 このようにすると、試料液中に試薬が溶解することにより生じたイオン種が電極系に到達する前に、電極系を用いて試料液の導電率が計測されるので、試料液の導電率を精度良く測定することができる。 ここで、試薬が酸化還元物質を含み、この酸化還元物質が試料液中に含まれる測定対象である成分と反応することにより還元され、かつ還元された酸化還元物質が電極系において酸化される場合、工程Gにおいて電極系に試料液が到達したことが検知されてから下記式(数4)で表わされる時間T2の経過後、工程Eにおいて2つの電極間に流れる電流が計測されることが好ましい。 ただし、上記式(数4)において、D2は酸化還元物質の拡散係数を表す。 このようにすると、酸化還元物質が電極系に到達してから2つの電極間に流れる電流が計測されるので、試料液中に含まれる測定対象である成分の濃度を精度良く測定することができる。 以下、本発明の実施の形態について図面を参照しながら説明する。以下の実施の形態では、試料液が尿であり、本発明に係る測定デバイスを用いて尿の導電率及び尿中に含まれるクレアチニンの濃度を測定する例について説明する。 (実施の形態1) 本発明の実施の形態1に係る測定デバイス100の構成について、図1を用いて説明する。図1は、本実施の形態に係る測定デバイス100の構成を示す分解斜視図である。 測定デバイス100は、第1の基板102、空気孔106を有する第2の基板104、及び第1の基板102と第2の基板104との間に配置されスリット110を有するスペーサ108とを備えている。第1の基板102、第2の基板104、及びスペーサ108を組み合わせることにより、スリット110の位置に形成される空間部が試料液保持部として機能する。試料液保持部の一方の端部は開口しており、その開口部が試料液導入孔112として機能する。また、スリット110は空気孔106と連通している。ここで、第1の基板102、第2の基板104、及びスペーサ108が本発明における基体に相当する。 第1の基板102上には、試料液保持部に露出する位置に、第1の電極122、第2の電極124、第3の電極126、及び第4の電極128が配置されている。第1の電極122、第2の電極124、第3の電極126、及び第4の電極128により電極系120が構成されている。第1の基板102の電極系120が設けられた面上であって、電極系120よりも空気孔106に近い位置に、試料液中に含まれる対象成分を測定するための試薬130が配置されている。試薬130の少なくとも一部は、試料液保持部に露出している。 測定デバイス100の製造方法について説明する。 第1の基板102、第2の基板104、及びスペーサ108の材料としては、例えば、絶縁性の材料であるポリエチレンテレフタレート(以下、PETと略称する)を用いる。PETからなる第1の基板102上に、例えば、パラジウム層(以下、Pd層と略称する)をスパッタリングにより形成した後、レーザートリミングを用いてPd層の一部をエッチングすることにより、第1の電極122、第2の電極124、第3の電極126、及び第4の電極128を含む電極系120を形成する。各電極の寸法は、例えば、長さ3.1mm、幅0.25mm、厚さ数nmである。 第1の基板102の電極系120が設けられた面上であって、電極系120よりも空気孔106に近い位置に、例えば、酸化還元物質であるフェリシアン化カリウムとリン酸緩衝溶液とを含む混合水溶液を滴下し、乾燥させて試薬130を形成する。混合水溶液は、例えば、1.4μLの滴下量で、幅7mm、長さ1mmの矩形の領域に滴下される。ここで、混合水溶液中におけるフェリシアン化カリウムの濃度は0.1M程度、リン酸緩衝溶液の濃度は0.4M程度であればよい。また、リン酸緩衝溶液としては、例えば、リン酸水素2カリウムとリン酸2水素カリウムとによりpH6.0に調整した溶液を用いることができる。フェリシアン化カリウムは、試料液中に含まれるクレアチニンの濃度の測定に使用することができる。ここで、電極系120の試薬130側の端部、すなわち最も試料液導入孔112から遠い端部(以後、電極系120の最下流部と示す)と、試薬130の電極系120側の端部、すなわち最も試料液導入孔112に近い端部(以後、試薬130の最上流部と示す)との間隔Lが180μmとなる位置に試薬130が配置される。 最後に、スペーサ108を挟んで、第1の基板102、スペーサ108、及び第2の基板104を貼り合わせることにより、測定デバイス100が完成する。スリット110の位置に形成される空間部の寸法は、例えば、幅1mm程度、長さ5mm程度、厚み0.7mm程度に設定する。 第1の基板102上に設けられたPd層のうち、第2の基板104に覆われずに露出している部分が、第1の端子132、第2の端子134、第3の端子136、及び第4の端子138として機能する。また、第1の基板102上に設けられたPd層のうち、スペーサ108のスリット110内に露出している部分が、第1の電極122、第2の電極124、第3の電極126、及び第4の電極128として機能する。第1の端子132、第2の端子134、第3の端子136、及び第4の端子138は、それぞれ第1の電極122、第2の電極124、第3の電極126、及び第4の電極128と、各電極の試料液導入孔112側の端部において接続している。 次に、本発明の実施の形態において用いる測定装置200の構成について、図2を用いて説明する。図2は、本実施の形態において用いる測定装置200の構成を示す斜視図である。 測定装置200は、筐体202、ディスプレイ204、及び測定開始ボタン206を備え、筐体202は、測定デバイス100を挿入するための測定デバイス挿入208を有している。 測定装置200の筐体202内部の構成について、図3を用いて説明する。図3は、測定装置200の筐体202内部の構成を示す機能ブロック図である。 測定装置200の筐体202内部には、定電流交流電源302、電圧検出器304、制御部306、計時部308、記憶部310、直流電源312、及び電流検出器314を備えている。 定電流交流電源302は、測定デバイス挿入孔208に挿入された測定デバイス100の第1の電極122−第4の電極128間に、第1の端子132及び第4の端子138を介して一定の交流電流を印加する機能を有する。印加する交流電流の周波数は1kHzであり、交流電流の電流値は、0.01mA〜0.2mAの範囲内における任意の値に設定することが可能である。 電圧検出器304は、第2の端子134及び第3の端子136を介して、第2の電極124−第3の電極126間の電圧を検出する機能を有する。 直流電源312は、第2の端子134及び第3の端子136を介して、第2の電極124−第3の電極126間に0.5Vの直流電圧を印加する機能を有する。 電流検出器314は、第2の端子134及び第3の端子136を介して、第2の電極124−第3の電極126間に流れる電流値を検出する機能を有する。 次に、測定デバイス100及び測定装置200を用いた本実施の形態に係る測定方法について、図4を用いて説明する。図4は、本実施の形態に係る測定方法の工程を示すフローチャートである。 まず、測定デバイス100の試料液導入孔112側が露出するように、測定デバイス100を測定デバイス挿入孔208に挿入した後、測定開始ボタン206を押し下げることにより測定装置200が起動された状態となる(S101)。このとき、直流電源312により、第2の電極124を対極として第3の電極126に+0.5Vの直流電位が印加される(S103)。 次に、測定デバイス100の試料液導入孔112に試料液を接触させると、毛細管現象により、試料液導入孔112から試料液保持部内に試料液が導入される。 試料液が電極系120に到達すると、第2の電極124と第3の電極126とが試料液を介して導通するので、第2の電極124−第3の電極126間の抵抗が低下する。この抵抗変化により第2の電極124−第3の電極126間に電流が流れ出す。電流検出器314により検出される電流値があらかじめ設定されている閾値を超えたことを制御部306が検知する(S105)と、制御部306は、試料液が電極系120に到達したことを検知(S107)して、計時部308を制御し測定時間の計時を開始する(S109)。 電極系120への試料液の到達を制御部306が検知すると、制御部306は第2の電極124−第3の電極126間への直流電圧の印加を解除する(S111)とともに、交流4電極法による試料液中の導電率測定を開始する。交流4電極法について以下に説明する。まず、制御部306は、定電流交流電源302を制御して、第1の端子132及び第4の端子138を介して第1の電極122−第4の電極128間に、+0.1mA、1kHzの一定の交流電流を印加する(S113)。5秒後に(S115)、電圧検出器304は第2の電極124−第3の電極126間の電圧値(交流電圧の実効値)を検出する(S117)。制御部306は、定電流交流電源302により印加された電流値及び電圧検出器304により検出された電圧値に基づき、試料液の導電率を算出する。この4電極法に基づいた測定を行うと、リード抵抗の影響を受けることなく試料液の導電率を測定することができる。本実施の形態において、交流電流の印加から5秒後に交流電圧を測定しているので、交流電流が十分に安定した状態で測定することができるため、測定精度をさらに向上させることができる。 試料液が試薬130の位置まで到達すると、試薬130が試料液中に溶解し、試薬130に含まれるフェリシアン化カリウムが電離することによりフェリシアン化物イオン及びカリウムイオンが生じる。フェリシアン化イオンが酸化剤として機能して試料液中に含まれるクレアチニンを酸化することにより、試料液中にフェリシアン化イオンの還元体であるフェロシアン化イオンが生成する。カリウムイオン、フェリシアン化物イオン及びフェロシアン化物イオンは、電極系120に向けて拡散し始める。 本実施の形態に係る測定デバイス100において、試料液中に試薬が溶解することにより生じた複数のイオン種のうち最も拡散係数の大きいイオン種はカリウムイオンであるため、カリウムイオンが最初に電極系120に到達する。カリウムイオンの拡散係数D1は1.9×10−9m2s−1であるので、カリウムイオンが試薬130の設けられた位置から電極系120まで到達するのに要する時間をT1は、上記式(数3)により、5.4秒と求められる。 本実施の形態において、電極系120に試料液が到達したことが検知されてから5秒後、すなわち上記式(数3)で表わされる時間T1が経過するまでに試料液の導電率が計測されるため、試料液中に試薬130が溶解することにより生じたイオン種が電極系120に到達する前に、電極系120を用いて試料液の導電率が計測されるので、試料液の導電率を精度良く測定することができる。 試料液の導電率の算出が完了すると、制御部306は、定電流交流電源302を制御して、交流電流の印加を停止させる(S119)。 フェリシアン化物イオン及びフェロシアン化物イオンの拡散係数は0.6×10−9m2s−1であるので、フェリシアン化物イオン及びフェロシアン化物イオンが試薬130の設けられた位置から電極系120まで到達するのに要する時間をT2は、上記式(数4)により、17.1秒と求められる。 計時部308による計測開始から17秒後(S121)、すなわち交流電流の印加停止から12秒後に、制御部306は、直流電源312を制御して、第2の端子134及び第3の端子136を介して、第2の電極124を対極として第3の電極126に+0.5Vの直流電位を印加する(S123)。直流電位の印加により、試料液中に蓄積されたフェロシアン化物イオンが電極系120において酸化される。 計時部308による計測開始から18秒後(S125)、すなわち直流電圧の印加から1秒後に、電流検出器314は、第2の電極124−第3の電極126間に流れる電流値を検出する(S127)。ここで、直流電圧の印加から1秒後に電流値を検出しているので、電圧印加に伴う二重層充電電流の影響を低減することができる。 試料液中におけるフェロシアン化物イオンの濃度は試料液中に含まれるクレアチニンの濃度に比例する。よって、直流電圧を印加した際に、フェロシアン化物イオンの酸化に基づいて流れる酸化電流値は、クレアチニン濃度に比例する。制御部306は、記憶部310に格納されている、電流値とクレアチニン濃度との相関を示す相関データを読み出し、相関データを参照して(S129)、電流検出器314により検出された電流値に基づき、電流値を試料液中に含まれるクレアチニンの濃度に換算する(S131)。 本実施の形態において、電極系120に試料液が到達したことが検知されてから18秒後、すなわち上記式(数4)で表わされる時間T2が経過しフェリシアン化物イオン及びフェロシアン化物イオンが試薬130の設けられた位置から電極系120まで到達後に、第2の電極124−第3の電極126間に流れる電流値が検出されるので、試料液中に含まれるクレアチニンの濃度を精度良く測定することができる。 最後に、制御部306は、ディスプレイ204に得られたクレアチニン濃度を表示する(S133)。 本実施の形態により、単一の電極系を用いて、試料液の導電率及び試料液中に含まれる測定対象成分の濃度を精度良く測定することができる。 なお、実施の形態1では、測定装置300が定電流交流電源302を備え、試料液の導電率を測定する際に、定電流交流電源302が測定デバイス100の第1の電極122−第4の電極128間に、第1の端子132及び第4の端子138を介して一定の交流電流を印加する例について記載したが、この例に限定されない。この構成に代えて、測定装置が定電流直流電源を備え、試料液の導電率を測定する際に、定電流直流電源が測定デバイスの第1の電極−第4の電極間に、第1の端子及び第4の端子を介して一定の直流電流を印加するようにしてもよい。 また、第2の電極124と第3の電極126とを用いて、電極系120に試料液が到達したことを検知したが、これに限定されず、電極系120に含まれる4つの電極のうち、いずれの2つの電極を用いてもよい。 (実施の形態2) 次に、本発明の実施の形態2に係る測定デバイス400の構成について、図5を用いて説明する。図5は、本実施の形態に係る測定デバイス400の構成を示す分解斜視図である。 本実施の形態に係る測定デバイス400は、実施の形態1に係る測定デバイス100と異なり、電極系420が第1の電極422及び第2の電極424という2つの電極から構成されている。また、第1の基板102、スペーサ108、及び第2の基板104を貼り合わせたときに、第1の基板102基板上に形成されたPd層のうち露出している部分が、第1の端子432及び第2の端子434して機能する。第1の端子432及び第2の端子434は、それぞれ第1の電極422及び第2の電極424と接続している。その他の構成については実施の形態1に係る測定デバイス100と同じであるため、実施の形態1と同じ符号を付して説明を省略する。 次に、本実施の形態において用いる測定装置500の筐体202内部の構成について、図6を用いて説明する。図6は、測定装置500の筐体202内部の構成を示す機能ブロック図である。 本実施の形態において用いる測定装置500の筐体202内部には、実施の形態1において用いる測定装置200と同様に、制御部306、計時部308、記憶部310、直流電源312、及び電流検出器314を備えている。本実施の形態において用いる測定装置500は、定電流交流電源及び電圧検出器を備えていない点で実施の形態1において用いる測定装置200と異なる。 直流電源312は、第1の端子432及び第2の端子434を介して、第1の電極422−第2の電極424間に直流電圧を印加する機能を有する。 電流検出器314は、第1の端子432及び第2の端子434を介して、第1の電極422−第2の電極424間に流れる電流値を検出する機能を有する。 次に、測定デバイス400及び測定装置500を用いた本実施の形態に係る測定方法について説明する。 まず、測定デバイス400の試料液導入孔112側が露出するように、測定デバイス400を測定デバイス挿入孔208に挿入した後、測定開始ボタン206を押し下げることにより測定装置500が起動された状態となる。このとき、直流電源312により、第1の電極422を対極として第2の電極424に+0.5Vの直流電位が印加される。 次に、測定デバイス400の試料液導入孔112に試料液を接触させると、毛細管現象により、試料液導入孔112から試料液保持部内に試料液が導入される。 試料液が電極系420に到達すると、第1の電極422と第2の電極424とが試料液を介して導通するので、第1の電極422−第2の電極424間の抵抗が低下する。この抵抗変化により第1の電極422−第2の電極424間に電流が流れ出す。電流検出器314により検出される電流値があらかじめ設定されている閾値を超えたことを制御部306が検知すると、制御部306は、試料液が電極系420に到達したことを検知して、計時部308を制御し測定時間の計時を開始する。 電極系420への試料液の到達を制御部306が検知すると、制御部306は第1の電極422−第2の電極424間への直流電圧の印加を維持し、測定時間の計時開始から5秒後に、電流検出器314により第1の電極422−第2の電極424間に流れる電流値を検出する。制御部306は、直流電源312により印加された電圧値及び電流検出器314により検出された電流値に基づき、試料液の導電率を算出する。本実施の形態において、直流電圧の印加から5秒後に電流値を測定しているので、電圧変化に伴う二重層充電電流の影響を抑制することができるため、測定精度をさらに向上させることができる。 試料液が試薬130の位置まで到達すると、試薬130が試料液中に溶解し、試薬130に含まれるフェリシアン化カリウムが電離することによりフェリシアン化物イオン及びカリウムイオンが生じる。フェリシアン化イオンが酸化剤として機能して試料液中に含まれるクレアチニンを酸化することにより、試料液中にフェリシアン化イオンの還元体であるフェロシアン化イオンが生成する。カリウムイオン、フェリシアン化物イオン及びフェロシアン化物イオンは、電極系420に向けて拡散し始める。 本実施の形態に係る測定デバイス400において、実施の形態1において用いる測定装置200と同様に、試料液中に試薬が溶解することにより生じた複数のイオン種のうち最も拡散係数の大きいイオン種はカリウムイオンであるため、カリウムイオンが最初に電極系120に到達する。カリウムイオンの拡散係数D1は1.9×10−9m2s−1であるので、カリウムイオンが試薬130の設けられた位置から電極系420まで到達するのに要する時間をT1は、上記式(数3)により、5.4秒と求められる。 本実施の形態において、電極系420に試料液が到達したことが検知されてから5秒後、すなわち上記式(数3)で表わされる時間T1が経過するまでに試料液の導電率が計測されるため、試料液中に試薬130が溶解することにより生じたイオン種が電極系420に到達する前に、電極系420を用いて試料液の導電率が計測されるので、試料液の導電率を精度良く測定することができる。 試料液の導電率の算出が完了すると、制御部306は、直流電源312を制御して、直流電圧の印加を停止させる。 以降の工程において、直流電源312により、第2の電極124−第3の電極126間ではなく、第1の電極422−第2の電極424間に直流電圧が印加される点、及び電流検出器314により、第2の電極124−第3の電極126間ではなく、第1の電極422−第2の電極424間に流れる電流値が検出される点以外は、実施の形態1と同様であるため説明を省略する。 本実施の形態により、単一の電極系を用いて、試料液の導電率及び試料液中に含まれる測定対象成分の濃度を精度良く測定することができる。 (実施の形態3) 次に、本発明の実施の形態3に係る測定デバイス600の構成について、図7を用いて説明する。図7は、本実施の形態に係る測定デバイス600の構成を示す分解斜視図である。 本実施の形態に係る測定デバイス600は、実施の形態1に係る測定デバイス100と異なり、試料液の供給を検知するための第2の電極系620をさらに備えている。第2の電極系620は、第5の電極622及び第6の電極624を有している。第1の電極系120と第2の電極系620との間に試薬130が位置するように、第1の電極系120、第2の電極系620及び試薬130が配置される。また、第1の基板102、スペーサ108、及び第2の基板104を貼り合わせたときに、第1の基板102基板上に形成されたPd層のうち第2の基板104に覆われずに露出している部分が、第1の端子132、第2の端子134、第3の端子136、第4の端子138、第5の端子632、及び第6の端子634として機能する。第5の端子632及び第6の端子634は、それぞれ第5の電極622及び第6の電極624と接続している。その他の構成については実施の形態1に係る測定デバイス100と同じであるため、実施の形態1と同じ符号を付して説明を省略する。 次に、本実施の形態において用いる測定装置700の筐体202内部の構成について、図8を用いて説明する。図8は、測定装置700の筐体202内部の構成を示す機能ブロック図である。 本実施の形態において用いる測定装置700の筐体202内部には、定電流交流電源302、電圧検出器304、制御部306、計時部308、記憶部310、直流電源312、及び電流検出器314に加えて、第2の直流電源712及び第2の電流検出器714を備えている点で、実施の形態1において用いる測定装置200と異なる。 第2の直流電源712は、第5の端子632及び第6の端子634を介して、第5の電極622−第6の電極624間に直流電圧を印加する機能を有する。 第2の電流検出器714は、第5の端子632及び第6の端子634を介して、第5の電極622−第6の電極624間に流れる電流値を検出する機能を有する。 定電流交流電源302、電圧検出器304、直流電源312、及び電流検出器314の機能は、実施の形態1において用いる測定装置200と同じであるため説明を省略する。 次に、測定デバイス600及び測定装置700を用いた本実施の形態に係る測定方法について説明する。 まず、測定デバイス600の試料液導入孔112側が露出するように、測定デバイス600を測定デバイス挿入孔208に挿入した後、測定開始ボタン206を押し下げることにより測定装置700が起動された状態となる。このとき、第2の直流電源712により、第5の電極622を対極として第6の電極624に+0.5Vの直流電位が印加される。 次に、測定デバイス600の試料液導入孔112に試料液を接触させると、毛細管現象により、試料液導入孔112から試料液保持部内に試料液が導入される。 試料液が第2の電極系620に到達すると、第5の電極622と第6の電極624とが試料液を介して導通するので、第5の電極622−第6の電極624間の抵抗が低下する。この抵抗変化により第5の電極622−第6の電極624間に電流が流れ出す。第2の電流検出器714により検出される電流値があらかじめ設定されている閾値を超えたことを制御部306が検知すると、制御部306は、試料液が第2の電極系620に到達したことを検知して、計時部308を制御し測定時間の計時を開始する。 本実施の形態に係る測定デバイス600では、試料液の供給を検知するための第2の電極系620が、試薬130と比較して試料液導入孔112から遠い位置に設けられている。このようにすると、試料液が試薬130の位置まで十分に供給されたときに限って第2の電極系620の出力が生じるので、十分に試料液が供給されなかった場合に誤って測定が開始されることを防ぐことができる。 第2の電極系620への試料液の到達を制御部306が検知すると、制御部306は第5の電極622−第6の電極624間への直流電圧の印加を解除するとともに、交流4電極法による試料液中の導電率測定を開始する。 以降の工程は、実施の形態1と同様であるため説明を省略する。 本実施の形態により、単一の電極系を用いて、試料液の導電率及び試料液中に含まれる測定対象成分の濃度を精度良く測定することができる。 なお、以上の実施の形態においては、交流4電極法または直流2電極法により試料液中の導電率を測定する例について説明したがこれに限定されない。これらの方法に代えて、例えば、4つの電極を有する電極系を用いて、4つの電極のうち2つの電極間に一定の直流電流を印加し、残りの2つの電極間に生じる電圧値を検出する方法や、2つの電極を有する電極系を用いて、2つの電極間に一定の交流電流を印加して、2つの電極間に生じる電圧値を検出する方法を用いてもよい。 本発明は、試料液の導電率及び試料液中に含まれる成分の濃度を測定する際、特に尿などの生体試料の導電率及び生体試料中に含まれるクレアチニン等の成分の濃度を測定する際に有用である。本発明の一実施の形態に係る測定デバイスの構成を示す分解斜視図同実施の形態において用いる測定装置の構成を示す斜視図同測定装置の筐体内部の構成を示す機能ブロック図同実施の形態に係る測定方法の工程を示すフローチャート本発明の他の実施の形態に係る測定デバイスの構成を示す分解斜視図同測定装置の筐体内部の構成を示す機能ブロック図本発明のさらに他の実施の形態に係る測定デバイスの構成を示す分解斜視図同測定装置の筐体内部の構成を示す機能ブロック図符号の説明 100,400,600 測定デバイス 102 第1の基板 104 第2の基板 106 空気孔 108 スペーサ 110 スリット 112 試料液導入孔 120,420 電極系 122,422 第1の電極 124,424 第2の電極 126 第3の電極 128 第4の電極 130 試薬 132,432 第1の端子 134,434 第2の端子 136 第3の端子 138 第4の端子 200,500,700 測定装置 202 筐体 204 ディスプレイ 206 測定開始ボタン 208 測定デバイス挿入孔 302 定電流交流電源 304 電圧検出器 306 制御部 308 計時部 310 記憶部 312 直流電源 314 電流検出器 620 第2の電極系 622 第5の電極 624 第6の電極 632 第5の端子 634 第6の端子 712 第2の直流電源 714 第2の電流検出器試料液導入孔として機能する第1の開口及び空気孔として機能する第2の開口と連通する空間部を有する基体、 前記空間部を囲む前記基体の内面のうち第1の面上に配置され、少なくとも2つの電極を含み、前記空間部に導入された試料液の導電率及び前記試料液中に含まれる少なくとも1つの成分の濃度を測定するための電極系、並びに 前記第1の面上であって、前記電極系よりも前記第2の開口に近い位置に配置された、前記成分を測定するための試薬を備える測定デバイス。前記試薬は酸化還元物質を含み、 前記酸化還元物質は前記成分と反応することにより還元され、かつ還元された前記酸化還元物質は前記電極系において酸化される、請求項1記載の測定デバイス。前記酸化還元物質がフェリシアン化カリウムである、請求項2に記載の測定デバイス。前記第1の面上に、前記電極系に含まれる前記少なくとも2つの電極の各々と接続する少なくとも2つのリードをさらに備え、 前記電極と前記リードとが、前記電極の前記第1の開口側の端部において接続している、請求項1〜3のいずれか1項に記載の測定デバイス。請求項1〜4のいずれか1項に記載の測定デバイスを用い、 (A)前記測定デバイスの前記第1の開口を通して、前記空間部に前記試料液を導入する工程、 (B)前記電極系に前記試料液が到達した後、前記電極系を用いて前記試料液の導電率を計測する工程、 (C)前記工程Bの後、前記試料液中に溶解した前記試薬が前記電極系まで拡散するのを待つ工程、 (D)前記工程Cの後、前記電極系に含まれる電極のうち少なくとも2つの電極間に電圧を印加する工程、 (E)前記工程Dにおいて電圧が印加された前記2つの電極間に流れる電流を計測する工程、及び (F)前記工程Eにおいて計測された電流に基づき、前記試料液中に含まれる前記成分の濃度を求める工程を含む測定方法。(G)前記工程Bの前に、前記電極系を用いて、前記電極系に前記試料液が到達したことを検知する工程をさらに含む、請求項5に記載の測定方法。前記工程Gにおいて前記電極系に前記試料液が到達したことが検知されてから下記式(数1)で表わされる時間T1が経過するまでに、前記工程Bにおいて前記電極系を用いて前記試料液の導電率が計測される、請求項6に記載の測定方法。 ただし、上記式(数1)において、 Lは前記電極系の前記試薬側の端部と前記試薬の前記電極系側の端部との間隔、 D1は前記試薬が前記試料液中に溶解することにより生じた複数のイオン種のうち最も拡散係数の大きいイオン種の拡散係数、 πは円周率を表す。前記試薬は酸化還元物質を含み、 前記酸化還元物質は前記成分と反応することにより還元され、かつ還元された前記酸化還元物質は前記電極系において酸化され、 前記工程Gにおいて前記電極系に前記試料液が到達したことが検知されてから下記式(数2)で表わされる時間T2の経過後、前記工程Eにおいて前記2つの電極間に流れる電流が計測される、請求項6に記載の測定方法。 ただし、上記式(数2)において、 Lは前記電極系の前記試薬側の端部と前記試薬の前記電極系側の端部との間隔、 D2は前記酸化還元物質の拡散係数、 πは円周率を表す。 【課題】簡易な構成であって、試料液の導電率及び該試料液に含まれる少なくとも1つの成分の濃度を精度良く測定することが可能な測定デバイス及びそれを用いた測定方法を提供することを目的とする。【解決手段】試料液導入孔として機能する第1の開口及び空気孔として機能する第2の開口と連通する空間部を有する基体、空間部を囲む基体の内面のうち第1の面上に配置され、少なくとも2つの電極を含み、空間部に導入された試料液の導電率及び試料液中に含まれる少なくとも1つの成分の濃度を測定するための電極系、並びに第1の面上であって、電極系よりも第2の開口に近い位置に配置された、成分を測定するための試薬を備える。【選択図】図1