生命科学関連特許情報

タイトル:特許公報(B2)_ハンチンチン遺伝子の発現抑制
出願番号:2005506175
年次:2008
IPC分類:C12N 15/09,A61K 48/00,A61K 31/7105,A61P 25/14


特許情報キャッシュ

金澤 一郎 劉 万兆 王 玉来 和田 圭司 後藤 順 村田 美穂 JP 4179562 特許公報(B2) 20080905 2005506175 20040430 ハンチンチン遺伝子の発現抑制 独立行政法人科学技術振興機構 503360115 廣田 雅紀 100107984 金澤 一郎 劉 万兆 王 玉来 和田 圭司 後藤 順 村田 美穂 JP 2003136477 20030514 20081112 C12N 15/09 20060101AFI20081023BHJP A61K 48/00 20060101ALI20081023BHJP A61K 31/7105 20060101ALI20081023BHJP A61P 25/14 20060101ALI20081023BHJP JPC12N15/00 AA61K48/00A61K31/7105A61P25/14 BIOSIS/WPI(DIALOG) PubMed JSTPlus(JDreamII) 特表2006−515864(JP,A) 特開平07−067661(JP,A) 特表2003−503008(JP,A) Neurology,Vol.60,No.5 Suppl 1(2003.Mar.)p.A286 Proc.Jpn.Acad.Ser.B,Vol.79B,No.10(2003.Dec.)p.293-298 10 JP2004006360 20040430 WO2004101787 20041125 15 20051104 特許法第30条第1項適用 平成15年5月6日第44回日本神経学会総会において「第44回日本神経学会総会プログラム・抄録集」にて発表 高堀 栄二 【技術分野】【0001】 本発明は、RNAi(RNA interference:RNA干渉)法を利用するものであって、ハンチンチン遺伝子の発現を抑制することができる、ハンチンチンmRNAの標的となる特定配列に相同なセンス鎖RNAとアンチセンス鎖RNAからなる二重鎖RNA(siRNA:small interfering RNA)、該二重鎖RNAからなるハンチンチン遺伝子の発現抑制剤、該発現抑制剤を有効成分として含有するハンチントン病の予防及び/又は治療薬等に関する。【背景技術】【0002】 ハンチントン病(HD)は、運動障害、認識喪失及び精神医学症状発現を特徴とする進行性の神経変性障害である(J. Med. 315, 1267-1276, 1986)。この病気は、普通、年齢30〜50歳の中年で発症するが、ある場合には非常に早期に、又は前記年齢よりも遅い時期に発症する場合もある。病徴は進行性であり、殆んどの場合は、運動障害の続発性の合併症の結果として発症の10〜20年後に死を招来する。ハンチントン病個体の脳の死後調査により、線条体に影響するニューロンの選択的喪失が判明している。ハンチントン病の原因遺伝子であるハンチンチン遺伝子は、ヒトでは染色体4の短腕における末端の細胞遺伝子学的サブバンド内にあるloci D4S126及びD4S98に挟まれた2.2Mb領域にマッピングされている(Neuron 3, 183-190, 1989、J. Hum. Genet. 49, 7-16, 1991、Am. J. Hum. Genet. 51, 357-362, 1992)。【0003】 ハンチントン病は、ハンチンチン遺伝子転写の第1エクソンにおいてCAGリピートが伸長し、ポリグルタミン(poly Q)トラクトに翻訳され、その結果脳線条体神経細胞が進行的に喪失することに因る遺伝性の神経変性疾患である(Annu. Rev. Med. 47, 201-209, 1996)。すなわち、ハンチントン病は、ハンチンチン遺伝子の第1エクソン部位上の非定常的なCAGリピートの伸長によって引き起こされ、選択的脳線条体神経の死(loss)に至る。ハンチンチン遺伝子は、ハンチンチンという分子量348kDaの細胞質タンパク質をコードし、中枢神経系(CNS)及び非中枢神経系(non−CNS)組織の両方において広く発現している。ハンチンチンタンパク質において、HD遺伝子のCAG3連配列(CAG triplets)はポリグルタミン(poly Q)に翻訳される。一般的に、正常及びミュータント(変異)ハンチンチンアレル中に、それぞれ6〜37、35〜180のCAGリピートが含まれる。【0004】 昨今、ハンチントン病に対する処置方法として、ハンチンチン遺伝子を処置したり、ハンチンチン遺伝子をターゲッティングにした方法、或いは、ハンチンチン遺伝子の発現するハンチンチンタンパク質に拮抗する物質を用いた方法等が開示されている。例えば、特開平7−67661号公報には、患者の細胞に正常なハンチンチンタンパク質を発現するDNAを導入して、ミュータントハンチンチン遺伝子を正常な遺伝子で置換する方法や、患者の細胞にハンチントン病のハンチンチン遺伝子のアンチセンスRNAを転写・発現可能な配列をコードする遺伝子を導入する方法、或いはハンチントン病のハンチンチンタンパク質にアンタゴニストを投与する方法等の処置方法が開示されている。また、特表2003−503008号公報には、ハンチントン病のような常染色体優性疾患に対する処置方法として、ハンチントン病のRNAを標的とした対立遺伝子特異的ターゲッティングによる処置方法が開示されている。しかし、これらの処置方法は、遺伝子導入の複雑さや安定性の問題、或いは得られる処置効果の面から、必ずしも期待通りのものとはなっていない。【0005】 一方、近年、ある種の生物(線虫:Caenorhabditis elegans)では、二重鎖RNAによって遺伝子の発現を特異的に阻害できることが見い出された(Nature 391, 806-811, 1998、WO99/32619)。この現象は、ある遺伝子と相同な、センスRNAとアンチセンスRNAからなる二重鎖RNA(double-strand RNA:ds RNA)が、その遺伝子の転写産物(mRNA)の相同部分を破壊するという現象で、RNAi(RNA interference)と呼ばれている。この現象は、その後、種々の動物(Cell 95, 1017-1026, 1998、Proc. Natl. Acad. Sci. USA 95, 14687-14692, 1998、Proc. Natl. Acad. Sci. USA 96, 5049-5054, 1999)や、植物(Proc. Natl. Acad. Sci. USA 95, 13959-13964, 1998)を含む下等な真核細胞において見い出されている。【0006】 RNAiは、発見された当初、哺乳動物細胞においては、約30bp以上のdsRNAを細胞内へ導入すると、細胞が本来持っている免疫機能によりアポトーシスを起こし、細胞が死んでしまうため、哺乳動物細胞での利用は困難と思われていた。しかし、2000年にマウス初期胚や哺乳動物培養細胞でも、RNAiが起こりうることが示され、RNAiの誘導機構そのものは、哺乳動物細胞にも存在することが明らかになってきた(FEBS Lett 479, 79-82, 2000、WO01/36646)。【0007】 このようなRNAiの機能を利用して、哺乳動物において、ある特定の遺伝子又は遺伝子群の発現を阻害することができれば有益であることは明らかである。多くの疾病(癌、内分泌疾患、免疫疾患など)は、哺乳動物の中で、ある特定の遺伝子又は遺伝子群が異常発現することによって起こるので、遺伝子又は遺伝子群の阻害は、これらの症状を治療するために使用することができる。また、変異型タンパク質の発現に起因して疾病が発症することもあり、このような場合には、変異した対立遺伝子の発現を抑えることで、疾病の治療が可能となる。更に、このような遺伝子特異的な阻害は、例えば、HIVなどのレトロウイルス(レトロウイルス中のウイルス遺伝子は、それらの宿主のゲノム中に組み込まれて、発現される)によって引き起こされるウイルス疾患を治療するためにも使用し得る。【0008】 RNAiの機能を引き起こすdsRNAは、当初、約30bp以上のdsRNAの細胞内への導入が必要と考えられていたが、最近、更に短い(21〜23bp)のdsRNA(短二重鎖RNA:siRNA:small interfering RNA)が、哺乳動物細胞系でも細胞毒性を示さずにRNAiを誘導できることが明らかになった(Nature 411, 494-498, 2001)。siRNAは、体細胞の全ての発生段階において遺伝子の発現を抑制する強力な手段として認識されており、進行性の遺伝病等において、発病する前に、病気の原因となる遺伝子の発現を抑制する方法として期待し得る。しかし、今までこのようなdsRNAによる遺伝子特異的な遺伝子発現の抑制方法をハンチントン病(HD)の遺伝病に効果的に適用した報告はなされていない。【0009】 本発明の課題は、ハンチンチン遺伝子の発現を抑制することができる、ハンチンチンmRNAの標的となる特定配列に相同なセンス鎖RNAとアンチセンス鎖RNAからなる二重鎖RNA(siRNA)、該二重鎖RNAからなるハンチンチン遺伝子の発現抑制剤、該発現抑制剤を有効成分として含有するハンチントン病の予防及び/又は治療薬等提供することにある。【0010】 ハンチントン病は、HD遺伝子転写の第1エクソンにおいてCAGリピートが伸長し、ポリグルタミン(poly Q)トラクトに翻訳され、その結果脳線条体神経細胞が進行的に喪失することに因る遺伝性の神経変性疾患である。本発明者らは、CAGリピートの上流のハンチンチンmRNAを調べたところ、siRNAの有効な標的である独特な配列を有する2つの部位を見い出した。そこで、この配列に相同なdsRNA配列として:a)5’非翻訳領域を標的としたsiRNA−5’UTR、及び、b)CAGリピートの上流近傍領域を標的としたsiRNA−HDエクソン1、更に、c)現在知られている通常のハンチンチン遺伝子とミュータントハンチンチン遺伝子との唯一の相違点はCAGリピートの長さであることから、CAGリピートを直接標的にするsiRNA−CAGの3種類のsiRNAを作製し、該siRNAの影響について培養組織モデルや、ハンチントン病モデルマウスを用いることにより解析したところ、siRNA−HDエクソン1が極めて効果的にハンチンチン遺伝子の発現を抑制し、ハンチントン病の発症を抑制することを見い出し、本発明を完成するに至った。【発明の開示】【0011】 すなわち本発明は、(1)ハンチンチン遺伝子の発現を抑制することができる、ハンチンチンmRNAの標的となる特定配列に相同なセンス鎖RNAとアンチセンス鎖RNAからなる二重鎖RNAであって、配列表の配列番号3に示される塩基配列及び配列表の配列番号4に示される塩基配列からなることを特徴とする二重鎖RNAや、(2)合成により製造されたセンス鎖RNAとアンチセンス鎖RNAから形成された(1)記載の二重鎖RNAや、(3)遺伝子組換え方法を用いることにより製造されたセンス鎖RNAとアンチセンス鎖RNAから形成された(1)記載の二重鎖RNAや、(4)遺伝子組換え方法を用いることにより製造されたセンス鎖RNAとアンチセンス鎖RNAが、それらRNAをそれぞれ転写することができるDNAを組み込んだ発現ベクターを宿主細胞に導入し、生成されたRNAを取得することによって形成されたものである(3)記載の二重鎖RNAに関する。【0012】 また本発明は、(5)上記(1)〜(4)のいずれか記載の二重鎖RNAからなるハンチンチン遺伝子の発現抑制剤や、(6)上記(1)〜(4)のいずれか記載の二重鎖RNAを、HIV−1由来のprotein transduction domainであるTAT配列に付加した融合物からなるハンチンチン遺伝子の発現抑制剤や、(7)上記(1)〜(4)のいずれか記載の二重鎖RNAと、正電荷リボソーム/脂質との複合体からなるハンチンチン遺伝子の発現抑制剤や、(8)上記(1)記載の二重鎖RNAを転写することができるDNAを組み込んだ発現ベクターからなるハンチンチン遺伝子の発現抑制剤に関する。【0013】 更に本発明は、(9)上記(5)〜(8)のいずれか記載の発現抑制剤を有効成分として含有するハンチントン病の予防及び/又は治療薬や、(10)さらに薬学的に許容される担体を含む(9)記載のハンチントン病の予防及び/又は治療薬に関する。【発明を実施するための最良の形態】【0014】 本発明の二重鎖RNAとしては、ハンチンチン遺伝子の発現を抑制することができる、ハンチンチンmRNAの標的となる特定配列に相同なセンス鎖RNAとアンチセンス鎖RNAからなるものであれば特に制限されるものではなく、上記ハンチンチン遺伝子の由来としては特に限定されないがヒト由来のハンチンチン遺伝子が好ましい。かかるハンチンチン遺伝子としては、配列表の配列番号1に示される塩基配列からなるハンチンチン遺伝子の第1エクソン(NCBIアクセッション番号 L12392及びNM_002111の1〜584番目;配列表の配列番号1、その遺伝子の対応するアミノ酸配列については、配列番号2に示される)(Cell 72, 6, 971-983, 1993)を例示することができる。【0015】 上記ハンチンチンmRNAの標的となる特定配列とは、ハンチンチンmRNAの特定の領域の部分配列、好ましくは19〜24bp、より好ましくは21〜23bp、特に好ましくは21bpの塩基長の部分配列をいい、かかるハンチンチンmRNAの標的配列としては、ハンチンチン遺伝子のエクソン1のCAGリピートの上流近傍の領域に由来するRNA、特に、配列表の配列番号1に示される塩基配列の343〜363番目の塩基配列に由来するRNAを好適に例示することができる。【0016】 また、ハンチンチンmRNAの標的となる特定配列に相同なセンス鎖RNAとは、上記配列番号1に示される塩基配列の343〜363番目の塩基配列などに由来するRNAをいい、ハンチンチンmRNAの標的となる特定配列に相同なアンチセンス鎖RNAとは、上記センス鎖RNAと相補的なRNAをいい、具体的には、センス鎖RNAとしては、GCCUUCGAGUCCCUCAAGUCC(配列番号3)を、アンチセンス鎖RNAとしては、UCCGGAAGCUCAGGGAGUUCA(配列番号4)を好適に例示することができる。また、センス鎖RNAとしてGAUGGACGGCCGCUCAGGUUU(配列番号5)を、アンチセンス鎖RNAとしてUUCUACCUGCCGGCGAGUCCA(配列番号6)を挙げることもできる。【0017】 本発明の二重鎖RNAは、通常これらセンス鎖RNAとアンチセンス鎖RNA同士が結合したsiRNAとして構築されるが、便宜上、センス鎖RNA配列において、1又は数個の塩基が欠失、置換或いは付加された変異センス鎖RNA配列と該変異センス鎖RNA配列に相補的な変異アンチセンス鎖RNA配列とのsiRNAとして構築した二重鎖RNAも本発明の範囲に含まれる。上記「1又は数個の塩基が欠失、置換或いは付加された塩基配列」とは、例えば1〜5個、好ましくは1〜3個、より好ましくは1〜2個、さらに好ましくは1個の任意の数の塩基が欠失、置換或いは付加された塩基配列を意味する。【0018】 本発明の二重鎖RNA(dsRNA)を作製するには、合成による方法及び遺伝子組換え技術を用いる方法等、公知の方法を適宜用いることができる。合成による方法では、配列情報に基づき、常法により二重鎖RNAを合成することができる。また、遺伝子組換え技術を用いる方法では、センス鎖DNAやアンチセンス鎖DNAを組み込んだ発現ベクターを構築し、該ベクターを宿主細胞に導入後、転写により生成されたセンス鎖RNAやアンチセンス鎖RNAをそれぞれ取得することによって作製することもできる。また、ハンチンチン遺伝子の特定配列のセンス鎖DNA−リンカー−アンチセンス鎖DNAを用いて、ヘアピン構造を形成するRNAを発現させることにより、所望の二重鎖RNAを作製することもできる。【0019】 本発明のハンチンチン遺伝子の発現抑制剤としては、上記本発明の二重鎖RNA(dsRNA)、該二重鎖RNAをHIV−1由来のprotein transduction domainであるTAT配列に付加した融合物、該二重鎖RNAと正電荷リボソーム/脂質との複合体、又は該二重鎖RNAを転写することができるDNAを組み込んだ発現ベクターを挙げることができる。上記発現ベクターとしては、レンチウイルスベクター、ヘルペスウイルス(HSV)ベクター、アデノウイルスベクター、ヒト免疫不全ウイルス(HIV)ベクター等のウイルスベクターや、動物細胞発現用プラスミドを挙げることができる。【0020】 本発明のハンチントン病の予防及び/又は治療薬としては、上記本発明のハンチンチン遺伝子の発現抑制剤を有効成分として含有するものであれば特に制限されないが、この分野で通常用いられる薬学的に許容される担体、例えば結合剤、安定化剤、賦形剤、希釈剤、pH緩衝剤、崩壊剤、可溶化剤、溶解補助剤、等張剤などの各種調剤用配合成分とともに用いることができる。該薬学的に許容される担体とともに用いる薬学的組成物は、その投与形態、例えば経口(口腔内又は舌下を含む)投与、或いは非経口投与(注射剤等)等に合わせて、薬学の分野ではそれ自体周知の製剤形態で製剤化することができる。【0021】 また、本発明のハンチンチン遺伝子の発現抑制方法や、本発明のハンチントン病の予防及び/又は治療方法としては、上記本発明の発現抑制剤やハンチントン病の予防及び/又は治療薬を、哺乳動物の生体、組織又は細胞に導入する方法であれば特に制限されるものではなく、例えば、二重鎖RNAのそれぞれのRNAを転写する遺伝子、ヘアピン状の二重鎖RNAを転写する遺伝子を哺乳動物の生体或いは生体細胞に導入するには、それ自体公知の遺伝子導入方法によって行うことができる。例えば、以下の導入方法を挙げることができる。(1)脳内注入法:胎児期や新生児期に二重鎖RNA、siRNAを組み込んだ生体内で合成できる既に公知のウイルスベクターやプラスミド、TAT−siRNA、正電荷リボソーム/脂質−siRNA複合体を直接に脳内注入する。成熟期に脳室内に投与する。(2)四肢や尻尾の静脈よりパルス注射法:短時間内に相当量の二重鎖RNA、siRNAを組み込んだ生体内で合成できる既に公知のウイルスベクターやプラスミド、正電荷リボソーム/脂質−siRNA複合体を注入する。(3)腹腔内投与法:siRNAを組み込んだ生体内で合成できる既に公知のウイルスベクター、TAT−siRNAを注入する。(4)鼻粘膜点滴導入法:二重鎖RNA、siRNAを組み込んだ生体内で合成できる既に公知のウイルスベクター、TAT−siRNAを鼻粘膜から吸収させる。【実施例】【0022】 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。【実施例1】【0023】[材料及び方法](siRNAsの作製)アンチセンス鎖RNAとしては、UCCGGAAGCUCAGGGAGUUCA(配列番号4) ハンチンチン遺伝子のエクソン1領域(NCBI アクセッション番号:L12392及びNM_002111の1〜584番目;配列番号1)を基にして、3種類のRNAsを設計した(図1)。21ヌクレオチドからなる3種類のRNAs、すなわち(1)siRNA−HDエクソン1 センス鎖:配列番号1の343〜363番目;GCCUUCGAGUCCCUCAAGUCC(配列番号3)、アンチセンス鎖:配列番号1の341〜361番目に相補的;UCCGGAAGCUCAGGGAGUUCA(配列番号4)、(2)siRNA−5’UTR センス鎖:配列番号1の190〜210番目;GAUGGACGGCCGCUCAGGUUU(配列番号5)、アンチセンス鎖:配列番号1の188〜208番目に相補的;UUCUACCUGCCGGCGAGUCCA(配列番号6)、(3)siRNA−CAG センス鎖:配列番号1の367〜387番目;GCAGCAGCAGCAGCAGCAGCA(配列番号7)、アンチセンス鎖:配列番号1の409〜429番目に相補的;GUCGUCGUCGUCGUCGUCGUC(配列番号8)、すべて図1参照)を化学的に合成し、HPLC精製を行った(Xeragan, USA)。二重鎖siRNAsは、アニーリングバッファー(100mM酢酸カリウム、2mM酢酸マグネシウム、30mMHEPES、0.1N水酸化カリウムでpH7.4に調整、4℃で保存)中で、20mMのセンス鎖及びアンチセンス鎖RNAをアニールさせた。反応混合物を95℃ 5分で反応させた後、1.5時間かけて37℃まで徐々に冷却し、6〜20時間室温下においた。アニール後のsiRNAsは、使用時まで、−20℃若しくは−80℃で保存した。【0024】(プラスミドの構築) 5’UTRエクソン1及びHDエクソン1の2種類の発現ベクターを構築した。2つのタイプのコンストラクトは、5’UTRを含むもの、又は含まないもの、そして、両タイプとも通常(34のCAGリピートを含む)又は変異(35以上のCAGリピートを含む)HD遺伝子を用いて作製した。コンストラクトは、ヒトHD 5’UTR断片及びエクソン1の完全長pd1EGFP-N1(de-stabled EGFP, Clontech)EGFPを持つインフレームと融合させた(図2参照)。【0025】(細胞系及び培地) COS−7細胞(African green monkey fibroblasts:アフリカミドリザル繊維芽細胞)、SH−sy5y細胞(human neuroblastoma:ヒト神経芽細胞腫)、及びNeuro-2A細胞(mouse neuroblastoma:マウスヒト神経芽細胞腫)のそれぞれ異なる起源を持つ3種の細胞系を用いた。COS−7細胞は、Minimum Essential Medium-Alpha Medium(Gibco BRL)、SH−sy5y細胞及びNeuro-2A細胞は、DMEM(Dulbecco's Modified Eagle's Medium)培地(Gibco BRL)中でそれぞれ培養した。なお、培地中には、10%熱非動化ウシ胎児血清、10U/mLペニシリン(明治製菓社製)、及び50μg/mLストレプトマイシン(明治製菓社製)をそれぞれ含む。【0026】(トランスフェクション) トランスフェクション24時間前に播種した培養細胞を、抗生物質を含まない10%FBS含有培地中で増殖させた。2種類のトランスフェクション試薬を用いることにより、構造プラスミド及びsiRNAsの細胞への導入を行った。【0027】 a.Effectene(Qiagen, Germany):細胞培養及びトランスフェクション実験には、96穴プレートを用いた。製造者の取扱説明書にしたがって、約40〜60%コンフルエントの細胞を、トランスフェクション前に24時間前培養した。0.5μLのEffectene試薬を各穴に添加し、24時間後に結果を解析した。【0028】 b.Lipofectamine 2000(Invitrogen, USA):製造者の取扱説明書にしたがって、約80%コンフルエントの細胞を、トランスフェクション前に24時間の前培養を行った。0.3μLのLipofectamine 2000試薬を各穴に添加した。【0029】 なお、a、bいずれの試薬を用いた実験においても、24〜48時間後に発現レベルを解析した。【0030】 c.ヒト内因性HD遺伝子発現の抑制に対するsiRNAsの影響を調べるために、Lipofectamine 2000試薬を用いて、siRNAsをSH−sy5y細胞に導入した。トランスフェクション後48時間後に細胞を回収し、全RNAをTrizol(Invitrogen, USA)を用いて抽出した。【0031】(siRNA効果の定量的評価) トランスフェクション後24時間及び48時間後に培養プレートを蛍光顕微鏡で観察した。siRNAの効果を定量的に評価するために、Wallac 1420 ARVO sx(ParkinElmer, USA)又はFluoreScan IIを用いて、GFP蛍光を測定した(励起:485nm、発光:538nm)。【0032】(mRNAレベルの定量) トランスジェニックHDエクソン1−EGFPmRNAの定量的解析は、LightCycler(Roche, USA)を用いたリアルタイムRT−PCRにより行った。SH−sy5y細胞の内因性HD発現におけるsiRNA−HDエクソン1の効果をLightCycler(Roche, USA)を用いた定量的RT−PCRにより測定した。コントロールとして、各サンプルごとのGAPDH及びβ−アクチンの発現レベルを定量した。【0033】(哺乳類モデル動物) ハンチントン病モデルマウス(系統名:B6CBA-Tg(HDexon1)62oGpb/J、一般名:R6/2、購入元:The Jackson Laboratory, USA)を用いた。このマウスはハンチンチン遺伝子の一部(ハンチンチンプロモーター及び114個のCAGリピート領域を含むエクソン1)約1kbの長さのヒト遺伝子を導入したトランスジェニックマウスのF1のメスの卵巣を移植したhemizygoteである。生後約9週から11週の間に発症し、臨床症状としては体重の減少、振戦、不安定歩行及び痙攣様発作などが示され、生後15週までに全例が死亡する。神経病理学的な所見としてほとんどすべての神経細胞の核内に抗ハンチンチン抗体及び抗ユビキチン抗体に染まる核内封入体が検出できる。【0034】(生体内投与方法) 生後2日のマウスの脳内に50μlのハミルトンのシリンジでsiRNA−HDエクソンとリポフェクタミン(Lipofectamine 2000, Invitrogen, USA)とのコンプレクス5μlの量(約200ng siRNA−HDエクソン含有)を注入した。針の注入位置はプレグマより後方へは1mm、右方へは1mmであり、注入の深さは2mmである。【0035】(生体内でのsiRNA効果の定量的評価) mRNAレベルの定量:脳内投与後ミュータントハンチンチンのmRNAの定量的解析は、ABI 7700 sequence detector system(ABI,USA)を用いたリアルタイムRT−PCRにより行った。プライマー配列:5’−CGCCGCCTCCTCAGCTTCCT−3’(フォワード;配列番号9);5’−GCGGTGGTGGCGGCGGCGGCT−3’(リバース;配列番号10)。内部標準としてGAPDHとβ−アクチンを使用した。【0036】 病理組織学的定量解析:室温でPBSによる5分間前灌流してから、4%パラホルムアルデヒド(PFA)で灌流固定した後、速やかに抜脳し、手早く同一固定液にて4℃で一晩後固定した。その後、脳組織をパラフィンで包埋し、4mmの厚さの切片を作成した。ABC法(Vectorstain Elite ABC kit, Vector Labs, Burlinggame, USA)にて免疫染色した。ウサギ抗ユビキチンポロクローナル抗体(1:100; Dako, CA, USA)とマウス抗ハンチンチンモノクローナル抗体(mEM48, 1:500; Chemicon, Temecula, USA)を用いた。DAB発色した後、ヘマトキシリンにて後染色し、脱水、透明、封入後光顕で観察し写真を撮った。【0037】個体レベルでの定量解析:体重変化:生後4週齢から体重を週ごとに測定した。尾吊り下げ試験:生後4週齢から14週齢の間、「発症」という判定するまでに週ごとにマウスの尻尾を掴んで吊り下げて後肢が腹側に抱き込む姿勢をとるまでの時間を計った。判定標準として15秒以内に出てきたら発症という判定を下す。生存期間:個別飼育にて病死までの寿命(日数)を記録した。【0038】[結果](インビトロデータ) COS−7培養細胞を用いて、合成siRNAの抑制効果を、発現コンストラクトと共にコトランスフェクトすることにより解析した。その結果、本発明者のsiRNAは、siRNAによって効果が異なるものの、外因性HD遺伝子エクソン1の発現を抑制したことを示した(図3〜5、参考写真1〜3参照)。調べた3種のsiRNAのうち、siRNA−HDエクソン1は非常に高い効果を示し、培地中のsiRNAの終濃度が40nMのときに、標的である導入遺伝子の発現を80%以上抑制した。これに対して、他の2種のsiRNA(siRNA−5’UTR、siRNA−CAG)は中程度から弱い効果しか示さなかった(図6a、GFP光による測定により判断)。さらに、本発明者は、2種のsiRNAによる抑制効果は遺伝子特異的であるが、siRNA−CAGは、HD遺伝子エクソン1がないベクターの発現を抑制する非特異的な抑制効果があることが観察された(図6b)。予想通り、siRNAは、定量的RT−PCRにより推測された標的であるトラスフェクト遺伝子のmRNA分解を誘導した。【0039】 ハンチントン病(HD)は選択的な神経細胞死によって引き起こされるものであり、神経細胞内のHDの発現を抑制することが最も重要である。神経細胞はRNAiに対し最も抵抗力があるとみなされてきたが(Gene 263, 103-112, 2001)、神経細胞内でうまく機能していることが実証された(PNAS 99, 18, 11926-11929, 2002)。本発明者による、siRNAと発現コンストラクトを、SH−sy5y(ヒト神経芽細胞腫)培養細胞内にコトランスフェクトした実験によれば、siRNA−HDエクソン1がCOS−7細胞培養と比較して効果は少ないものの、他の2種のsiRNAは低程度の効果しかないか、もしくは効果がなかった(図6a)。【0040】 上記の結果により、siRNA−HDエクソン1が、ハンチントン病(HD)の発現を最も抑制することが明らかになったので、本発明者は、SH−sy5y細胞における内因性HDの発現に対する影響を調べた。HD mRNAの定量的測定により、siRNA−HDエクソン1を使用してから48時間後には、内因性HD遺伝子の発現が60%以上阻害されることが示された。ところが、GAPDHとβ−アクチン両方のmRNAレベルはどちらも明らかに変化しなかったので、siRNA−HDエクソン1がHD遺伝子を特異的に抑制することが証明された(図6c)。【0041】(インビボデータ) 個体レベルでの効果は発症する証拠とする尾吊り下げ試験ではsiRNA−HDエクソン治療群は有意に遅れることがわかった。また、5週齢以後、未治療群R6/2マウスにおける持続的な体重の減少と比べsiRNA−HDエクソン治療群R6/2マウスにおいては有意に改善された(図7)。また、siRNA−HDエクソン治療群と未治療群における累積生存率曲線の比較(Kaplan-Meter法)から、未治療群(黒線)と比べ治療群(赤線)の生存期間も有意に延長された(図8)。【0042】 この臨床効果とともに、脳内では注入後48時間で線条体のミュータントのハンチンチンのmRNA発現量が60パーセント減少した(図9)。病理学的に抗ユビキチン抗体と抗ハンチンチン抗体を用いた免疫染色の結果、siRNA−HDエクソン治療群では線条体におけるユビキチンとハンチンチン陽性の核内凝集体の出現頻度が両方とも顕著に減少していた(図10)。第10図には、10週齢のR6/2トランスジェニックマウスの線条体におけるハンチンチン及びユビキチン陽性の核内封入体の免疫染色像が示されている。A−Fはハンチンチン、G−Hはユビキチンの染色性を示す。ハンチンチンの場合、全く検出されない野生型マウス(A,D)と比べR6/2マウス(B,E,C,F)では、はっきりとした核内強陽性の所見が見られる。一方、siRNA−HDエクソン治療群のマウス(C,F)では、対照となる未治療群(B,E)と比べ、核内封入体の数が顕著に減少している。同様にsiRNA−HDエクソン治療群のマウスのユビキチン核内封入体の数も減っている(Gは未治療群;HはsiRNA−HDエクソン治療群)。【0043】 上記のように、ただ一回注入だけで生体内でハンチンチン遺伝子の転写レベルが抑制され、R6/2マウスにおいて新しい核内凝集体の形成が減少しており、結果としてこのマウスの寿命が延びた。【0044】[考察] 理想的なアプローチとしては、毒性が現れる前に、(35以上のCAGリピートを持つ)変異対立遺伝子の発現を抑えることである。しかし、siRNAとそれぞれ異なるCAGリピートの長さ(14〜149)を含むコンストラクトとの組合わせたところ、抑制効果がCAGリピートの長さとは無関係であることが明らかになった。【0045】 本研究により、siRNAの一つが、ハンチントン病(HD)の発現の特異的抑制を効率的に仲介することが明らかになった。RNAiは成熟したマウスにおいても機能することが示されたので(Nature 418, 38-39, 2002)、HD発現の効率的な抑制は、様々の種類の細胞及びモデル動物の生体内における内因性ハンチンチンを抑制した後、未だ解明されていないハンチンチンの機能を研究するのに有用である。siRNA技術を治療法として利用することはHD患者の治療の戦略となりうる(Mol. Med. Today 3, 175-183, 1997)。特定の範囲でのHD発現の抑制により、疾病の進行を停止させることができる。なぜなら、ハンチンチンの機能は、HD患者において発現した遺伝子産物の量に対して敏感に(もしくは、検出限界以下)現れるようには見えないからである(Cell 101, 57-66, 2000)。【産業上の利用可能性】【0046】 本発明においては、ハンチンチン遺伝子発現を特異的かつ効率的に抑制する二重鎖RNA(dsRNA)の作製に成功した。本発明のdsRNAは、ゲノム中での配列の希少性の検索及びハンチンチン遺伝子産物の予測二次構造の検討結果からdsRNA配列を決定し、作製したものである。本発明のdsRNAは、RNA干渉により遺伝子発現を抑制するが、その効果が特異的かつ効率的であり、ハンチンチン遺伝子発現を特異的かつ効率的に抑制する。特に、本発明で構築された短二重鎖RNA(siRNA)は顕著な抑制効果を奏し、ハンチントン病の遺伝子治療実現化のための薬剤としての期待が大きい。【0047】 ハンチントン病は進行性で有用な治療法が確立されていない遺伝性疾患である故に、疾患原因である変異遺伝子を特異的かつ効率的に発現抑制すれば有用な治療法となると期待されている。本発明の二重鎖RNA(dsRNA)によるRNAi(RNA干渉)の応用は上記目的を達成するに有望な手段であり、ハンチントン病治療法の開発における本発明の寄与は大きい。【0048】 また、歯状核赤核淡蒼球ルイ体萎縮症、脊髄小脳失調症、球脊髄性筋萎縮症やMachado−Joseph病などはハンチントン病と共通の発症機序を持つトリプレットリピート病である。従って、本発明によるハンチントン病の治療方法の確立は、これらの共通点を持つ疾患の克服の可能性を広げるものである。【図面の簡単な説明】【0049】【図1】本発明の実施例における、siRNAs及び標的部位の配列を示す写真である。【図2】本発明の実施例における、siRNAの標的部位とpd1EGFP N1の発現コンストラクトを示す写真である。なお、aは、siRNAを用いた標的部位(黒い矢印)を、bは、pd1EGFP N1プラスミドを、cは、さまざまな数のCAGリピート(poly Q)を含むHDエクソン1を挿入したpd1EGFP N1の発現コンストラクトを示す写真である。【図3】本発明の実施例における、siRNA−HDエクソン1をコトランスフェクトしたCOS−7細胞の蛍光顕微鏡による観察を示す写真である。【図4】本発明の実施例における、siRNA−5’UTRをコトランスフェクトしたCOS−7細胞の蛍光顕微鏡による観察を示す写真である。【図5】本発明の実施例における、siRNA−CAGをコトランスフェクトしたCOS−7細胞の蛍光顕微鏡による観察を示す写真である。【図6】本発明の実施例における、siRNA−CAGをコトランスフェクトしたCOS−7細胞の蛍光顕微鏡による観察を示す写真である。なお、aは、未処理のコントロール(4つの独立した実験)をEGFP光の平均値で標準化することにより、siRNAの効果及びsiRNAの効果が標的位置と細胞種により異なることを示した図を、bは、親ベクター(HDエクソン1なし)をそれぞれ3種のsiRNAとコトランスフェクトした結果を、cは、未処理のコントロールに対する、HD、β−アクチン、GAPDHのmRNA量の相対的平均を示す写真である。【図7】本発明の実施例における、siRNA−HDエクソン治療群のR6/2マウスが14週齢の時点で体重の減少が有意に抑えられたことを示す写真である。siRNA−HDエクソン治療群と未治療群を比較すると、野生型タイプ(WT;黒バー)に比べて、未治療群(グレーバー)の体重が顕著に減少していることに対し、治療群(赤バー)の方はわずかしか減少が見られない。【図8】本発明の実施例における、siRNA−HDエクソン治療群のR6/2マウスにおける生存期間が有意に伸びていたことを示す写真である。【図9】本発明の実施例における、siRNA−HDエクソン治療群のR6/2マウスに脳内注入48時間後線条体におけるミュータントハンチンチンmRNAの発現量が抑制されたことを示す定量RT−PCRの結果の写真である。縦軸がミュータントハンチンチンのmRNAレベルの相対値を示し、グレーのバーがβ−アクチンを内部標準とし、赤のバーがGAPDHを内部標準とした値を示す。【図10】本発明の実施例における、siRNA−HDエクソン治療群のR6/2マウスにおいて線条体の神経細胞核内封入体の出現頻度が顕著に減少したことを示す写真である。A−Fは、抗ハンチンチン抗体、G−Hは抗ユビキチン抗体で染まったことを示している。 ハンチンチン遺伝子の発現を抑制することができる、ハンチンチンmRNAの標的となる特定配列に相同なセンス鎖RNAとアンチセンス鎖RNAからなる二重鎖RNAであって、配列表の配列番号3に示される塩基配列及び配列表の配列番号4に示される塩基配列からなることを特徴とする二重鎖RNA。 合成により製造されたセンス鎖RNAとアンチセンス鎖RNAから形成されたことを特徴とする請求項1記載の二重鎖RNA。 遺伝子組換え方法を用いることにより製造されたセンス鎖RNAとアンチセンス鎖RNAから形成されたことを特徴とする請求項1記載の二重鎖RNA。 遺伝子組換え方法を用いることにより製造されたセンス鎖RNAとアンチセンス鎖RNAが、それらRNAをそれぞれ転写することができるDNAを組み込んだ発現ベクターを宿主細胞に導入し、生成されたRNAを取得することによって形成されたものであることを特徴とする請求項3記載の二重鎖RNA。 請求項1〜4のいずれか記載の二重鎖RNAからなるハンチンチン遺伝子の発現抑制剤。 請求項1〜4のいずれか記載の二重鎖RNAを、HIV−1由来のprotein transduction domainであるTAT配列に付加した融合物からなるハンチンチン遺伝子の発現抑制剤。 請求項1〜4のいずれか記載の二重鎖RNAと、正電荷リボソーム/脂質との複合体からなるハンチンチン遺伝子の発現抑制剤。 請求項1記載の二重鎖RNAを転写することができるDNAを組み込んだ発現ベクターからなるハンチンチン遺伝子の発現抑制剤。 請求項5〜8のいずれか記載の発現抑制剤を有効成分として含有するハンチントン病の予防及び/又は治療薬。 さらに薬学的に許容される担体を含むことを特徴とする請求項9記載のハンチントン病の予防及び/又は治療薬。配列表


ページのトップへ戻る

生命科学データベース横断検索へ戻る