生命科学関連特許情報

タイトル:特許公報(B2)_診断用及び治療用の精製C型肝炎ウイルスエンベロープ蛋白
出願番号:2004051709
年次:2007
IPC分類:C12N 15/09,C07K 14/18,C12P 21/02


特許情報キャッシュ

マエルテンス,ゲールト ボスマン,フォンス ドゥ・マルティノフ,ハイ バイセ,マリー・アンヘ JP 3892443 特許公報(B2) 20061215 2004051709 20040226 診断用及び治療用の精製C型肝炎ウイルスエンベロープ蛋白 インノジェネティクス・エヌ・ブイ 502152193 INNOGENETICS N.V. 津国 肇 100078662 篠田 文雄 100075225 マエルテンス,ゲールト ボスマン,フォンス ドゥ・マルティノフ,ハイ バイセ,マリー・アンヘ EP 94870132.1 19940729 20070314 C12N 15/09 20060101AFI20070222BHJP C07K 14/18 20060101ALI20070222BHJP C12P 21/02 20060101ALI20070222BHJP JPC12N15/00 AC07K14/18C12P21/02 C C12N15/00−15/90 PubMed Science Direct JSTPlus(JDream2) 医学・薬学予稿集全文データベース 医中誌WEB 特開平05−344899(JP,A) 特開平01−250397(JP,A) 特開平04−320693(JP,A) 国際公開第92/008734(WO,A1) Journal of Virology, 1992, vol.66, p.1425-1431 17 1996506189 19950731 2004222729 20040812 73 20040326 坦ケ 隆幸 本発明は、組換え蛋白発現、組換え蛋白の精製、合成ペプチド、HCV感染の診断、HCV感染に対する予防的処置の一般的分野、及び慢性肝炎患者の治療の臨床的有効性の予後/監視、又は自然の疾患の予後/監視に関する。 更に詳しくは、本発明は、C型肝炎ウイルスエンベロープ蛋白の精製方法、診断、予防又は治療における本発明に記載の方法により精製されたHCVエンベロープ蛋白の使用、疾患を監視するための測定法、及び/又は疾患の診断、及び/又は疾患の治療における単一の又は特定オリゴマーのE1及び/又はE2及び/又はE1/E2エンベロープ蛋白の使用に関する。 本発明に記載の方法により細胞溶解物(ライセート)から精製されたE2蛋白は、患者血清の約95%と反応する。この反応性は、CHO細胞から分泌されたE2の反応性と同様である(Spaeteら、1992)。しかし、細胞内で発現された形態のE2は、マンノース炭水化物モチーフの含量が多いため、より密接に未変性のウイルスエンベロープ蛋白に類似しており、一方、CHO細胞から分泌されたE2蛋白は、ガラクトース及びシアル酸糖残基で更に修飾されている。E2のアミノ末端側の半分がバキュロウイルス系で発現されると、幾つかの患者群の血清のわずかに約13〜21%のみしか検出できない(Inoue ら、1992)。大腸菌(E. coli)からE2を発現させると、HCV血清の反応性は更に低く、14%(Yokosukaら、1992)〜17%(Mitaら、1992)の範囲であった。 本発明のワクシニアで発現させた精製した組換えE1蛋白を用いると、HCV血清の約75%(及び慢性患者の約95%)は抗E1陽性であり、Koharaら(1992)及びHsu ら(1993)の結果とは全く異なる。Koharaらは、ワクシニアウイルス発現E1蛋白を使用し、患者の7〜23%に抗E1抗体を検出し、一方、Hsu らは、バキュロウイルス発現E1を使用して、わずかに14/50(28%)の血清のみを検出した。 これらの結果は、エンベロープ蛋白のヒト患者血清との高い反応性を得るには、良好な発現系のみならず良好な精製プロトコールが必要であることを示している。これは、蛋白の本来の折りたたみの保存を保証する本発明の適正な発現系及び/又は精製プロトコールを用い、夾雑蛋白の排除を保証し、コンフォメーションを保ち、及びこれによりHCVエンベロープ蛋白の反応性を保持する本発明の精製プロトコールを用いることにより、達成される。診断的スクリーニング測定法に必要な精製HCVエンベロープ蛋白の量は、1年間に数グラムの範囲である。ワクチンとして使用するには、更に多量のエンベロープ蛋白が必要であろう。したがって、最適の発現構築物の選択及び小規模のスケールアップにはワクシニアウイルス系が使用でき、高マンノース炭水化物を含有する単一の又は特定オリゴマーのエンベロープ蛋白の大規模発現と精製は、数種の酵母株から発現される場合に達成されうる。例えばB型肝炎の場合は、哺乳動物細胞からのHBsAgの製造は、酵母由来のB型肝炎ワクチンと比較して、はるかに費用がかさむ。発明の目的 本発明の目的は、組換えにより発現させたE1及び/又はE2及び/又はE1/E2蛋白を、凝集物ではなく、夾雑物を含まない単一の又は特定オリゴマーの組換え蛋白として、診断用及びワクチンに直接使用できるように、該組換え蛋白の新規の精製方法を提供することである。 本発明の別の目的は、HCVのE1及び/又はE2ドメインからのコンフォメーション性エピトープを含む精製(単一の又は特定オリゴマーの)組換えE1及び/又はE2及び/又はE1/E2糖蛋白を含む組成物を提供することである。 本発明の更に別の目的は、E1及び/又はE2及び/又はE1/E2蛋白を組換えにより発現させるための新規な組換えベクター構築物、及び該ベクター構築物で形質転換された宿主細胞を提供することである。 本発明の目的はまた、組換えHCV E1及び/又はE2及び/又はE1/E2蛋白の製造方法及び精製方法を提供することである。 本発明の目的はまた、本発明の組換えHCV E1及び/又はE2及び/又はE1/E2蛋白の診断及び免疫原用の用途を提供すると共に、本発明の組換えHCV E1及び/又はE2及び/又はE1/E2蛋白のいずれかを含む、診断用キット、ワクチン又は治療剤を提供することである。 本発明のさらなる目的は、HCV感染に罹っている患者の(例えば、インターフェロンによる)治療に対する応答を監視/予知するための、E1、E2、及び/又はE1/E2蛋白、又はその好適な部分の新規な用途を提供することである。 本発明の目的はまた、HCVスクリーニング及び確認抗体試験における本発明の組換えE1、E2、及び/又はE1/E2蛋白の用途を提供することである。 本発明の目的はまた、HCV感染の診断、及び抗体の作成に使用できるE1及び/又はE2ペプチドを提供することである。このようなペプチドは、ヒトのモノクローナル抗体を単離するために使用することもできる。 本発明の目的はまた、E1及び/又はE2エピトープ(組換え蛋白中に含有されているペプチド又はコンフォメーション性エピトープ中に含有されている)と特異的に反応する、モノクローナル抗体、更に詳しくはヒトモノクローナル抗体又はヒト化されたマウスモノクローナル抗体を提供することである。 本発明の目的はまた、HCV抗原の検出又は慢性HCV感染の治療のための、抗E1又は抗E2モノクローナル抗体の可能な用途を提供することである。 本発明の目的はまた、HCV感染に罹っている患者の(例えば、インターフェロンによる)治療に対する応答を監視/予知するための、又は該疾患の予後を監視/予知するためのキットを提供することである。 本発明の全ての目的は、後述する実施態様により達成されたと考えられる。定義 以下の定義は、本発明に使用される異なる用語や表現を例示する。 「C型肝炎ウイルス単一エンベロープ蛋白」という用語は、E1又はE2領域の少なくとも1つのHCVエピトープを定義するアミノ酸配列(及び/又はアミノ酸類似体)を含む、ポリペプチド又はその類似体〔例えば、ミモトープ(mimotopes)〕を意味する。これらの単一のエンベロープ蛋白は、広義には、組換えにより発現されたエンベロープ蛋白のモノマー形態でもホモオリゴマー形態でもよい。典型的には、エピトープを規定する配列は、HCVのE1又はE2領域のアミノ酸配列に対応する(同一であるか、又はエピトープを破壊しない本来のアミノ酸残基の類似体の置換による)。一般に、エピトープを規定する配列の長さは、3個以上のアミノ酸、更に典型的には5個以上のアミノ酸、更に典型的には8個以上のアミノ酸、そして更に典型的には10個以上のアミノ酸である。コンフォメーション性エピトープは、抗原の三次元構造(例えば、折りたたみ)により形成されると考えられるため、エピトープを規定する配列の長さは大きく変動しうる。すなわち、エピトープを規定するアミノ酸は、数は比較的少ないが、折りたたみにより正しいエピトープのコンフォメーションとなる分子の長さに沿って広く散在している。エピトープを規定する残基間の抗原の部分は、エピトープのコンフォメーション構造に決定的に重要ではない可能性がある。例えば、エピトープコンフォメーションに決定的に重要な配列(例えば、ジスルフィド結合に関与するシステイン、グリコシル化部位など)が維持されるならば、これらの介在配列を欠失又は置換させても、コンフォメーション性エピトープは影響を受けないことがある。コンフォメーション性エピトープはまた、ホモオリゴマー又はヘテロオリゴマーのサブユニットの2個以上の基本的領域により形成されてもよい。 本発明のHCV抗原は、HCVのE1及び/又はE2(エンベロープ)ドメインからのコンフォメーション性エピトープを含む。ウイルスのエンベロープ蛋白に対応すると考えられているE1ドメインは、現在、HCVポリ蛋白のアミノ酸192〜383にまたがっていると推定されている(Hijikataら、1991)。哺乳動物系で発現される(グリコシル化される)と、35kDa の概算分子量(SDS−PAGEにより測定)を有すると考えられている。E2蛋白(以前はNS1と呼ばれていた)は、HCVポリ蛋白のアミノ酸384〜809又は384〜746にまたがっており(Grakoui ら、1993)、これもまたエンベロープ蛋白であると考えられている。ワクシニア系で発現される(グリコシル化される)と、見かけのゲル分子量約72kDa を有すると考えられている。これらの蛋白の終点は近似的なものであると理解される(例えば、E2のカルボキシ末端は、大体730〜820アミノ酸領域のどこかであることができ、例えばアミノ酸730、735、740、742、744、745、好適には746、747、748、750、760、770、780、790、800、809、810、820で終わる)。E2蛋白はまた、E1、P7(アミノ酸747〜809)、NS2(アミノ酸810〜1026)、NS4A(アミノ酸1658〜1711)又はNS4B(アミノ酸1712〜1972)と一緒に発現されてもよい。正しい蛋白の折りたたみを得るために、これらの他のHCV蛋白と一緒に発現されることが重要なことがある。 また、本発明の実施例の項で使用される単離株は、本発明の範囲を限定するものではなく、HCVの1、2、3、4、5、6、7、8、9、10型、又は他の任意の新規の遺伝子型からのHCV単離株は、本発明の実施のためのE1及び/又はE2配列の好適な供給源である、と理解される。 本発明で使用されるE1及びE2抗原は、全長ウイルス蛋白、その実質的全長型、又はその機能性断片(例えば、エピトープの形成又は保持に必須な配列を失なっていない断片)であってよい。更に、本発明のHCV抗原はまた、目的のコンフォメーション性エピトープの形成を阻止又は妨害しない他の配列も含んでよい。コンフォメーション性エピトープの有無は、目的の抗原を抗体(そのコンフォメーション性エピトープに対するポリクローナル血清又はモノクローナル抗体)でスクリーニングし、その反応性を、その抗原の変性したもの(たとえあるとしても、直鎖のエピトープのみを保持する)の反応性と比較することにより、容易に決定できる。このようなスクリーニングでポリクローナル抗体を用いる場合は、ポリクローナル血清をまず変性抗原で吸収して、目的の抗原に対する抗体が保持されているか否かを調べることが有利である可能性がある。 本発明のHCV抗原は、目的のエピトープを与える任意の組換え法により作成できる。例えば、哺乳動物細胞又は昆虫細胞での組換え細胞内発現は、天然のHCV抗原の場合のように「未変性の」コンフォメーションでグリコシル化されたE1及び/又はE2抗原を提供するための好ましい方法である。酵母細胞及び突然変異酵母株〔例えば、mnn9突然変異体(Kniskernら、1994)、又はバナジン酸耐性選択(Ballouら、1991)により得られるグリコシル化突然変異体〕は、分泌される高マンノース型の糖の産生に理想的に適しており、一方、哺乳動物細胞から分泌された蛋白は、幾つかの診断用途又はワクチン用途には不適である可能性があるガラクトース又はシアル酸を含有するなどの修飾を受けていることがある。しかし、ある用途には、蛋白について公知であるように、他の組換え宿主(例えば、大腸菌)中で抗原を発現させて、回収後蛋白を復元することも、可能であり、充分である。 「融合ポリペプチド」という用語は、HCV抗原が1つの連続的なアミノ酸鎖(この鎖は天然には存在しない)の一部であるポリペプチドを意味する。HCV抗原は、互いにペプチド結合により直接連結しているか、又は介在するアミノ酸配列により分離していてよい。融合ポリペプチドはまた、HCVにとって外来性のアミノ酸配列を含有してもよい。 「固相」という用語は、各HCV抗原又はHCV抗原を含む融合ポリペプチドが、共有結合又は疎水性吸着のような非共有結合により結合する固体を意味する。 「生物学的試料」という用語は、個体により産生された抗体、更に詳しくはHCVに対する抗体を通常含有する、哺乳動物個体(例えば、類人猿、ヒト)の体液又は組織を意味する。体液又は組織はまた、HCV抗原をも含有してもよい。このような成分は当該分野で公知であり、血液、血漿、血清、尿、脊髄液、リンパ液、呼吸器系・腸管又は尿生殖路の分泌物、涙、唾液、乳、白血球及び骨髄腫細胞などがあるが、これらに限定されない。身体成分には、生物学的液体が含まれる。「生物学的液体」という用語は、生物から得られる液体を意味する。幾つかの生物学的液体は、他の生成物(例えば、第VIII:C因子のような凝固因子、血清アルブミン、成長ホルモンなど)の供給源として使用される。このような場合、生物学的液体の供給源が、HCVのようなウイルスで汚染されていないことが重要である。 「免疫学的に反応性」という用語は、問題の抗原が、HCVに感染した個体からの身体成分に存在する抗HCV抗体と特異的に反応することを意味する。 「免疫複合体」という用語は、抗原上のエピトープに抗体が結合すると形成される組合せを意味する。 本明細書で使用される「E1」は、HCVポリ蛋白の最初の400アミノ酸内で発現される蛋白又はポリペプチドを意味し、時にE、ENV又はS蛋白と呼ばれる。この天然の形態は、膜に強く結合して存在する35kDa の糖蛋白である。ほとんどの天然のHCV株では、E1蛋白は、C(コア)蛋白の後に続いてウイルスポリ蛋白中にコードされている。E1蛋白は、全長ポリ蛋白のおよそアミノ酸(aa)192から約aa383まで広がっている。 本明細書で使用される「E1」という用語は、天然のE1と免疫学的に交差反応する類似体及び端を切り取った(短縮)形態も含み、遺伝子型1、2、3、4、5、6、7、8、9、10、又は他の新たに同定されたあらゆるHCVタイプ若しくはサブタイプのE1蛋白を含む。 本明細書で使用される「E2」は、HCVポリ蛋白の最初の900アミノ酸内で発現される蛋白又はポリペプチドを意味し、時にNS1蛋白と呼ばれる。この天然の形態は、膜に強く結合して存在する72kDa の糖蛋白である。ほとんどの天然のHCV株では、E2蛋白はE1蛋白の後に続いてウイルスポリ蛋白中にコードされている。E2蛋白は、およそアミノ酸384位からアミノ酸746位まで広がっており、別の形態のE2は、アミノ酸809位まで広がっている。本明細書で使用される「E2」という用語は、天然のE2と免疫学的に交差反応する類似体及び端を切り取った形態も含む。例えば、コドン383と384の間への複数のコドンの挿入、及びアミノ酸384〜387の欠失が、Katoら(1992)により報告されている。 本明細書で使用される「E1/E2」は、少なくとも1つのE1成分と少なくとも1つのE2成分とを含有するオリゴマー形態のエンベロープ蛋白を意味する。 「特定オリゴマーの」E1及び/又はE2及び/又はE1/E2エンベロープ蛋白という用語は、凝集物ではない、全ての可能なオリゴマー形態の、組換えにより発現されたE1及び/又はE2エンベロープ蛋白を意味する。E1及び/又はE2特定オリゴマーのエンベロープ蛋白はまた、ホモオリゴマーのE1又はE2エンベロープ蛋白(後述)とも呼ばれる。 「単一の又は特定オリゴマーの」E1及び/又はE2及び/又はE1/E2エンベロープ蛋白という用語は、単一のモノマー性E1又はE2蛋白(単語の厳密な意味において単一)、及び特定オリゴマーのE1及び/又はE2及び/又はE1/E2組換え発現蛋白を意味する。本発明のこれらの単一の又は特定オリゴマーのエンベロープ蛋白は、更に、以下の式(E1)x(E2)y〔式中、xは0と100の間の数であり、yは0と100の間の数であるが、ただし、xとyの両方が0であることはない〕により定義される。x=1でy=0の時、該エンベロープ蛋白はモノマー性E1を含む。 本明細書で使用される「ホモオリゴマー」という用語は、2つ以上のE1又はE2モノマーを含有するE1及び/又はE2の複合体を意味し、例えば、E1/E1二量体、E1/E1/E1三量体又はE1/E1/E1/E1四量体、及びE2/E2二量体、E2/E2/E2三量体又はE2/E2/E2/E2四量体、E1五量体及び六量体、E2五量体及び六量体、又はE1若しくはE2の任意のより高次のホモオリゴマーは、本明細書の定義の範囲内で全て「ホモオリゴマー」である。このオリゴマーは、C型肝炎ウイルスの異なるタイプ又はサブタイプから得られるE1又はE2の、1つ、2つ又は数個の異なるモノマーを含有してもよく、例えば、WO 94/25601として公開された国際出願及びヨーロッパ特許出願第94870166.9号(両者とも本出願人による)に記載のものを含む。このような混合オリゴマーも本発明の範囲内でホモオリゴマーであり、HCVのより普遍的な診断、予防又は治療を可能にしうる。 本明細書に記載の蛋白に適用される「精製された」という用語は、目的の蛋白が、組成物中の総蛋白成分の少なくとも35%を構成している組成物を意味する。目的の蛋白は、好適には総蛋白成分の少なくとも40%、より好適には少なくとも約50%、より好適には少なくとも約60%、更により好適には少なくとも約70%、更により好適には少なくとも約80%、更により好適には少なくとも約90%、最も好適には少なくとも約95%を構成する。該組成物は、本発明で使用される純度(%)の測定に影響しない他の化合物(例えば、炭水化物、塩、脂質、溶媒など)を含有してもよい。「単離された」HCV蛋白は、少なくとも35%の純度のHCV蛋白組成物を意味する。 「実質的に精製された蛋白」という用語は、インビトロの診断方法及び治療用化合物として使用できるように精製された蛋白を意味する。これらの蛋白は、実質的に細胞性蛋白、ベクター由来蛋白、又は他のHCVウイルス成分を含まない。これらの蛋白は、通常均質(少なくとも純度80%、好適には90%、より好適には95%、より好適には97%、より好適には98%、より好適には99%、更に好適には99.5%、そして最も好適には、SDS−PAGEや銀染色のような従来法により、夾雑蛋白が検出されない)になるまで精製される。 本発明に関連して使用される「組換えにより発現された(組換え発現)」という用語は、以下に詳述するように、本発明の蛋白が、原核生物であれ、又は下等若しくは高等真核生物中であれ、組換え発現方法で産生されたことを意味する。 「下等真核生物」という用語は、酵母、真菌などのような宿主細胞を意味する。下等真核生物は、一般に(必ずしもそうとは限らないが)単細胞である。好ましい下等真核生物は、酵母であり、特にサッカロミセス(Saccharomyces)、シゾサッカロミセス(Schizosaccharomyces)、クルベロミセス(Kluveromyces)、ピヒア(Pichia)〔例えば、ピヒア・パストリス(Pichia pastoris)〕、ハンゼヌラ(Hansenula)〔例えば、ハンゼヌラ・ポリモルファ(Hansenula polymorpha)〕、ヤロウィア(Yarowia)、シュワニオミセス(Schwaniomyces)、シゾサッカロミセス(Schizosaccharomyces)、チゴサッカロミセス(Zygosaccharomyces)などに属する種がある。サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、S・カールスベルゲンシス(S. carlsbergensis)及びK・ラクチス(K. lactis)は、最も一般的に使用される酵母宿主であり、好都合な真菌宿主である。 「原核生物」という用語は、大腸菌(E. coli)、乳酸桿菌(Lactobacillus)、ラクトコッカス(Lactococcus)、サルモネラ(Salmonella)、連鎖球菌(Streptococcus)、枯草菌(Bacillus subtilis)、又はストレプトミセス(Streptomyces)のような宿主を意味する。これらの宿主もまた、本発明中で考慮される。 「高等真核生物」という用語は、高等動物(例えば、哺乳動物、は虫類、昆虫など)に由来する宿主細胞を意味する。現在好適な高等真核生物宿主細胞は、チャイニーズハムスター(例えば、CHO)、サル(例えば、COS及びVero細胞)、ベビーハムスター腎(BHK)、ブタ腎(PK15)、ウサギ腎13細胞(RK13)、ヒト骨肉腫細胞株143B、ヒト細胞株HeLa及びヒト肝癌細胞株(例えばHepG2)、及び昆虫細胞株〔例えば、スポドプテラ・フルギペルダ(Spodoptera frugiperda)〕から得られる。宿主細胞は、浮遊又はフラスコ培養、組織培養、器官培養などで提供されてもよい。あるいは、宿主細胞は、トランスジェニック動物であってもよい。 「ポリペプチド」という用語は、アミノ酸のポリマーを意味し、生成物の特定の長さを意味しない。したがって、ペプチド、オリゴペプチド、及び蛋白は、ポリペプチドの定義に含まれる。この用語は、ポリペプチドの発現後の修飾(例えば、グリコシル化、アセチル化、リン酸化など)も排除しない。この定義に含まれるものは、例えば、アミノ酸の1つまたはそれ以上の類似体(例えば、非天然アミノ酸、PNAなどを含む)を含有するポリペプチド、置換された結合を有するポリペプチド、及び当業者に公知の他の修飾物(天然に存在するものも存在しないものも含む)がある。 「組換えポリヌクレオチド又は核酸」という用語は、ゲノム、cDNA、半合成又は合成由来のポリヌクレオチド又は核酸を意味し、これは、その起源又は操作により、(1)天然の状態で結合しているポリヌクレオチドの全て又は一部と結合していない、(2)天然の状態で結合しているポリヌクレオチド以外のポリヌクレオチドに結合している、又は(3)天然には存在しない。 「組換え宿主細胞」、「宿主細胞」、「細胞」、「細胞株」、「細胞培養物」という用語、及び単細胞として培養された微生物又は高等真核生物細胞株を意味する他の類似の用語は、組換えベクター又は他の移入(transfer)ポリヌクレオチドの受容者として使用できるか又は使用されている細胞を意味し、トランスフェクションされた元々の細胞の子孫を包含する。自然の、偶然の又は意図的な突然変異があるため、1つの親細胞の子孫は、形態又はゲノムDNA若しくは総DNAの相補性において必ずしも元々の親と完全に同一でなくてもよいと理解される。 「レプリコン」という用語は、細胞内でポリヌクレオチド複製の自律的単位として機能する(すなわち、自らの制御下で複製できる)任意の遺伝要素(例えば、プラスミド、染色体、ウイルス、コスミドなど)である。 「ベクター」という用語は、目的の読みとり枠(open reading frame)の発現及び/又は複製を提供する配列を更に含むレプリコンである。 「調節配列」という用語は、これに連結しているコード配列を発現させるのに必要なポリヌクレオチド配列である。このような調節配列の本質は、宿主生物に依存して異なる。すなわち、原核生物では、このような調節配列は、一般に、プロモーター、リボソーム結合部位及び転写終結部(ターミネーター)を含み、真核生物では、このような調節配列は、一般に、プロモーター、ターミネーター、及びある場合にはエンハンサーを含む。「調節配列」という用語は、少なくともその存在が発現に必要な全ての成分を包含し、また、その存在が有利である付加的成分(例えば、分泌を制御するリーダー配列)も包含してよい。 「プロモーター」という用語は、隣接する構造遺伝子の正常な転写開始部位でmRNA産生が開始するように、RNAポリメラーゼがDNA鋳型に結合することを可能にする共通配列を含むヌクレオチド配列である。 「作動可能に連結した」という用語は、このように記載された成分が、その目的とする方法で機能することを可能にする関係にある近接関係を意味する。コード配列に「作動可能に連結した」調節配列は、調節配列と適合性のある条件下でコード配列の発現が達成される方法で連結している。 「読みとり枠」(ORF)は、ポリペプチドをコードし、停止コドンを含まないポリヌクレオチド配列の領域である。この領域は、コード配列の一部又は全コード配列であってもよい。 「コード配列」は、適切な制御配列の支配下に置くと、mRNAに転写され、及び/又はポリペプチドに翻訳されるポリヌクレオチド配列である。コード配列の境界は、5’末端の翻訳開始コドンと、3’末端の翻訳停止コドンとにより決定される。コード配列は、mRNA、DNA(cDNAを含む)、及び組換えポリヌクレオチド配列を包含しうるが、これらに限定されない。 本明細書で使用される「エピトープ」又は「抗原決定基」は、免疫反応性のあるアミノ酸配列を意味する。一般的に、エピトープは、少なくとも3〜4個のアミノ酸、更に一般的には少なくとも5又は6個のアミノ酸よりなり、時にエピトープは約7〜8個、又は更には約10個のアミノ酸よりなる。本明細書において、指定されたポリペプチドのエピトープは、指定されたポリペプチド中のエピトープと同じアミノ酸配列を有するエピトープ、及びその免疫学的等価物を意味する。このような等価物には、例えば、遺伝子型1a、1b、1c、1d、1e、1f、2a、2b、2c、2d、2e、2f、2g、2h、2i、3a、3b、3c、3d、3e、3f、3g、4a、4b、4c、4d、4e、4f、4g、4h、4i、4j、4k、4l、5a、5b、6a、6b、6c、7a、7b、7c、8a、8b、9a、9b、10aに属する、現在公知の配列又は株などの、又は他の新たに定義される任意のHCV(サブ)タイプの、株、サブタイプ(=遺伝子型)、又はタイプ(群)特異的変異体も包含される。エピトープを構成するアミノ酸は直鎖の配列の一部である必要はなく、任意の数のアミノ酸が散在していてコンフォメーション性エピトープを形成してもよいと理解すべきである。 「免疫原性」という用語は、単独で又は担体と結合して、アジュバントの存在下又は非存在下で、体液性及び/又は細胞性応答を引き起こす、物質の能力を意味する。「中和」とは、部分的又は完全に、感染性因子の感染性を阻止する免疫応答を意味する。「ワクチン」は、部分的又は完全な、HCVに対する防御を誘導することができる免疫原性組成物である。ワクチンはまた、個体の治療に有用であることがあり、この場合、これは治療用ワクチンと呼ばれる。 「治療薬」という用語は、HCV感染を治療することができる組成物を意味する。 「有効量」という用語は、それが投与された個体の免疫原性応答を誘導するか又は目的の系(例えば、免疫測定法)において検出できる程度に免疫反応するのに充分な、エピトープ含有ポリペプチドの量を意味する。好適には、この有効量は、前記で定義したように、治療をするのに充分である。必要な正確な量は、用途に応じて異なる。例えば、ワクチンとしての応用、又はポリクローナル抗血清/抗体の産生のためには、有効量は、個体の種、年齢及び一般的状態、治療すべき疾患の重篤度、選択された特定のポリペプチド及び投与方法などにより異なりうる。また、有効量は、比較的広い、決定的に重要ではない範囲にあると考えられる。適切な有効量は、通常の実験のみにより容易に決定することができる。HCV疾患の予防のためのE1及び/又はE2及び/又はE1/E2単一の又は特定オリゴマーのエンベロープ蛋白の好適な範囲は、0.01〜100μg/用量、好適には0.1〜50μg/用量である。充分な免疫応答とその後のHCV疾患に対する防御のために、個体当たり数回の用量が必要な場合もある。発明の詳細な説明 更に詳しくは、本発明は、形質転換された宿主細胞を溶解して組換えにより発現された蛋白を単離する場合に、ジスルフィド結合切断剤によりジスルフィド結合切断又は還元工程を行うことを特徴とする、E1及び/又はE2及び/又はE1/E2よりなる群から選択される組換えHCVの単一の又は特定オリゴマーのエンベロープ蛋白を単離又は精製する方法に関する。 本発明のこれらの「単一の又は特定オリゴマーの」エンベロープ蛋白の本質は、これらには夾雑蛋白が含まれず、かつ夾雑物質とジスルフィド結合で結合していないということである。 本発明の蛋白は、下等又は高等真核生物細胞あるいは原核生物細胞中で組換え技術で発現される。本発明の組換え蛋白は、好適にはグリコシル化されており、高マンノース型の、ハイブリッドの、又は複合のグリコシル化を受けていてもよい。好適には、該蛋白は、実施例の項で詳述されるように哺乳動物の細胞株から、又はこれも実施例の項で詳述されるように突然変異酵母株のような酵母中で発現される。 本発明の蛋白は、小胞体又はゴルジ装置のような細胞成分内で発現されてもよく又は分泌されてもよい。しかし好適には、本発明の蛋白は、高マンノース型のグリコシル化を受けており、哺乳動物細胞の小胞体又はゴルジ装置中に保持されるか、又は酵母細胞中に保持されるか又はそこから分泌され、好適には、mnn9突然変異体(Kniskernら、1994)のような酵母突然変異株又はバナジン酸耐性(Ballouら、1991)により選択された突然変異体から分泌される。 HCVエンベロープ蛋白の発現に際し、本発明者らは、分子内又は分子間ジスルフィド架橋に関与していないシステインの遊離チオール基の幾つかが、宿主又は発現系由来(例えばワクシニア)蛋白あるいは他のHCVエンベロープ蛋白(単一の又はオリゴマーの)のシステインと反応して、非特異的分子間架橋を形成することを示すことができた。これにより、夾雑蛋白と共にHCVエンベロープ蛋白の「凝集物」が形成される。WO 92/08734において、精製後に「凝集物」が得られたことが示されていたが、どの蛋白相互作用が関与していたかは記載されなかった。PCT特許WO 92/08734において、ワクシニアウイルス系で発現された組換えE1/E2蛋白は、凝集物として部分的に精製され、その純度はわずかに70%であることが見出されたため、精製された凝集物は、診断、予防又は治療の目的に有用ではなかった。 したがって、本発明の主要な目的は、単一の又は特定オリゴマーのHCVエンベロープ蛋白を夾雑蛋白から分離し、精製した蛋白(純度>95%)を診断、予防及び治療の目的に使用することである。これらの目的のために、本発明者らは、凝集した蛋白複合体(「凝集物」)はジスルフィド架橋と非共有結合的蛋白−蛋白相互作用とに基づいて形成されるという証拠を提供することができた。したがって、本発明は、特異的条件下でジスルフィド結合を選択的に切断するための手段、及び診断、予防及び治療上の利用を大きく妨害する夾雑蛋白から、切断された蛋白を分離するための手段を提供する。ジスルフィド架橋の再形成を防止するために、遊離のチオール基をブロック(可逆的に又は不可逆的に)してもよく、又は放置して酸化させ、他のエンベロープ蛋白とオリゴマーを形成させてもよい(ホモオリゴマーの定義を参照)。夾雑蛋白のレベルが検出不能であるため、このような蛋白オリゴマーは、WO 92/08734及びWO 94/01778に記載の「凝集物」とは本質的に異なることは理解されるべきである。 該ジスルフィド結合の切断は、以下の方法によっても達成される。(1)システイン残基がシステイン酸に修飾される、システイン酸による過ギ酸酸化(Moore ら、1963)。(2)例えば妥当な酸化剤(例えば、Cu2+)と共に亜硫酸塩(SO32-)を用いる、システインがS−スルホシステインに修飾される、亜硫酸分解(R−S−S−R → 2R−SO3-)(Bailey and Cole 、1959)。(3)ジチオスレイトール(DTT)、β−メルカプトエタノール、システイン、グルタチオンレッド、ε−メルカプトエチルアミン、又はチオグリコール酸のようなメルカプタンによる還元〔このうち、DTTとβ−メルカプトエタノールが通常使用される(Cleland, 1964)〕は、水環境で実施することができ、システインが修飾を受けないため、本発明の好適な方法である。(4)ホスフィン(例えば、Bu3 P)による還元(Ruegg and Rudinger、1977)。 したがって、これらの化合物は全て、本発明のジスルフィド結合を切断するための物質又は手段と見なされる。 本発明の該ジスルフィド結合切断(又は還元)工程は、好適には部分的ジスルフィド結合切断(還元)工程である(部分的切断又は還元条件下で実施される)。 本発明の好適なジスルフィド結合切断又は還元剤は、ジチオスレイトール(DTT)である。低濃度の該還元剤(すなわち、例えばDTTの場合は、約0.1〜約50mM、好適には約0.1〜約20mM、好適には約0.5〜約10mM、好適には1mM以上、2mM以上、又は5mM以上の範囲、更に好適には約1.5mM、約2.0mM、約2.5mM、約5mM又は約7.5mMである)を使用して部分的還元が得られる。 該ジスルフィド結合切断工程は、発現された蛋白を解離することができる適当な界面活性剤(ジスルフィド結合切断の手段の一例として、又は切断剤と組合せて)、例えば、デシルPEG(Decyl PEG)、エンピゲン−BB(EMPIGEN-BB)、NP−40、コール酸ナトリウム、トリトンX−100の存在下で実施することもできる。 該還元又は切断工程(好適には部分的還元又は切断工程)は、好適には界面活性剤の存在下で(界面活性剤と共に)実施される。本発明の好適な界面活性剤は、エンピゲン−BBである。使用される界面活性剤の量は、好適にはエンピゲン−BBのような界面活性剤1〜10%の範囲、好適には3%以上、より好適には約3.5%である。 ジスルフィド結合を切断するための特に好適な方法は、前記で詳述した古典的なジスルフィド結合切断剤と界面活性剤(これも前記で詳述した)の組合せである。実施例の項に記載されるように、低濃度のDTT(1.5〜7.5mM)と約3.5%のエンピゲン−BBとの特定の組合せは、組換えにより発現されたE1及びE2蛋白の精製のための、還元剤と界面活性剤の特に好適な組合せであることが示された。ゲル濾過クロマトグラフィーにより、該部分的還元によって、場合により二量体状のE1蛋白の生成、及び免疫測定法において擬反応性を引き起こす夾雑蛋白からのこのE1蛋白の分離がもたらされることが示されている。 しかし、システインをより近づきやすくする、当該分野で公知の任意の還元剤と、当該分野で公知の任意の界面活性剤又は他の手段との、他の任意の組合せもまた、そのような組合せが、本発明で例示された好適な組合せと同じ、ジスルフィド架橋切断という目標を達成するかぎり、本発明の範囲内にあると理解すべきである。 本発明のジスルフィド結合切断手段は、ジスルフィド結合の還元以外に、以下のタイプの反応を引き起こす当該分野で公知の任意のジスルフィド架橋交換物質(有機性又は蛋白性の競合的物質、例えばCreighton 、1988を参照)を含んでもよい: R1S−SR2+R3SH→R1S−SR3+R2SH *R1、R2:蛋白凝集物の化合物 *R3SH:競合的物質(有機性、蛋白性) 「ジスルフィド架橋交換物質」という用語は、ジスルフィド結合再形成物質及びジスルフィド結合阻止物質を包含すると解釈すべきである。 本発明はまた、以下のリストから選択される当該分野で公知の任意のSH基保護又は結合試薬の使用を更に包含する、前述のHCVの単一の又は特定オリゴマーのエンベロープ蛋白を精製又は単離する方法にも関する:− グルタチオン− 5,5’−ジチオビス−(2−ニトロ安息香酸)又はビス−(3−カルボキシ−4−ニトロフェニル)−ジスルフィド〔DTNB又はエルマン試薬(Ellman's reagent)〕(Elmann、1959)− N−エチルマレイミド(NEM;Benesch ら、1956)− N−(4−ジメチルアミノ−3,5−ジニトロフェニル)マレイミド又はタピーの(Tuppy's)マレイミド(これは、蛋白を着色する)− P−クロロメルクリ安息香酸(Grassetti ら、1969)− 4−ビニルピリジン(Friedman and Krull、1969)は、酸加水分解反応後に放出されうる− アクリロニトリル、これは酸加水分解反応後に放出されうる(Weil and Seibles、1961)− NEM−ビオチン〔例えば、シグマ(Sigma)B1267から入手できる〕− 2,2’−ジチオピリジン(Grassetti and Murray、1967)− 4,4’−ジチオピリジン(Grassetti and Murray、1967)− 6,6’−ジチオジニコチン酸(DTDNA;Brown and Cunnigham、1970)− 2,2’−ジチオビス−(5’−ニトロピリジン)(DTNP;米国特許第3597160号)又は他のジチオビス(複素環誘導体)化合物(Grassetti and Murray、1969) 引用した文献を調査すると、スルフヒドリル基に対する異なる試薬が、しばしば同じ蛋白又は酵素分子の異なる数のチオール基と反応することがわかる。このチオール基の反応性の変動は、分子の形、周りの原子の群及びその電荷、ならびに試薬分子又はイオンの大きさ、形及び電荷などの、これらの基の立体環境によると結論されうる。しばしば、適当な濃度の変性剤(例えば、ドデシル硫酸ナトリウム、尿素又は塩酸グアニジン)の存在により、蛋白分子に充分な変性(unfolding)が引き起こされ、チオール基が全ての試薬へ均等に近づくことが可能になる。変性剤の濃度を変化させることにより、変性の程度を調節することができ、こうして反応性の程度の異なるチオール基が露出されうる。現在までに報告されている研究のほとんどは、p−クロロメルクリ安息香酸、N−エチルマレイミド及びDTNBを用いて行われているが、最近開発された他の試薬も同じく有効である可能性がある。これらは、構造が異なるため、実際、チオール基の立体環境の変化に対して異なる応答を示しうる可能性がある。 あるいは、E1及びE2(エンベロープ)蛋白の組換え発現及び精製に際して、遊離SH基の酸化を防ぎ、したがって大きな分子間凝集物の形成を防ぐための、低pH(好適にはpH6未満)のような条件も、本発明の範囲内に包含される。 本発明の好適な精製されたSH基保護剤は、N−エチルマレイミド(NEM)である。該SH基保護試薬は、組換え宿主細胞の溶解時、及び前述の部分的還元操作の後、又はジスルフィド架橋切断の任意の他の操作の後に使用されうる。該SH基保護試薬はまた、検出可能な標識物を提供することができる任意の基、及び/又は該組換え蛋白を固体基材に固定化することを助ける任意の基(例えば、ビオチン化NEM)により、修飾することもできる。 システイン架橋を切断し、遊離のシステインを保護する方法は、Darbre(1987)、Means and Feeney(1971)、及びWong(1993)によっても記載されている。 前記で定義した本発明の単一の又は特定オリゴマーの組換えE1及び/又はE2及び/又はE1/E2蛋白を精製する方法は、更に、以下の工程を含むことを特徴とする:− 組換えE1及び/又はE2及び/又はE1/E2発現宿主細胞を、好適にはN−エチルマレイミド(NEM)のようなSH基保護剤及び場合により適切な界面活性剤(好適にはエンピゲン−BB)の存在下で、溶解し、− 例えばレクチンクロマトグラフィー〔例えばレンチル(lentil)レクチンクロマトグラフィー〕あるいは抗E1及び/又は抗E2特異的モノクローナル抗体を用いる免疫親和性クロマトグラフィーなどの親和性精製により、該HCVエンベロープ蛋白を回収し、次に− ジスルフィド結合切断剤(例えばDTT)を用いて、好適にはSH基保護剤(例えばNEM又はビオチン−NEM)の存在下で、ジスルフィド結合を還元又は切断して、そして− 還元したHCVのE1及び/又はE2及び/又はE1/E2エンベロープ蛋白を、例えばゲル濾過(サイズ排除クロマトグラフィー又は分子ふるい)により及び場合により付加的なNi2+−IMACクロマトグラフィー及び脱塩工程により、回収する。 前述の回収工程は、当業者に公知の他の任意の適当な方法を用いて実施してもよいと理解すべきである。 好適なレクチンクロマトグラフィー系としては、実施例に例示されているように、ガランタス・ニバリス(Galanthus nivalis)凝集素(GNA)クロマトグラフィー、又はレンス・クリナリス(Lens culinaris)凝集素(LCA)〔レンチル(lentil)〕レクチンクロマトグラフィーが挙げられる。他の有用なレクチンとしては、高マンノース型の糖を認識するもの、例えばナルシサス・シュードナルシサス(Narcissus pseudonarcissus)凝集素(NPA)、ピサム・サチバム(Pisum sativum)凝集素(PSA)、又はアリウム・ウルシヌム(Allium ursinum)凝集素(AUA)が含まれる。 前記方法は、好適には、前述のように細胞内で産生された単一の又は特定オリゴマーのHCVエンベロープ蛋白の精製に使用することができる。 分泌されたE1又はE2又はE1/E2オリゴマーについては、リシヌス・コムニス(Ricinus communis)凝集素I(RCAI)のような複合糖質を結合するレクチンが好適なレクチンである。 更に詳しくは本発明は、前記で定義された方法により単離又は精製されていることを特徴とする、E1及び/又はE2及び/又はE1/E2よりなる群から選択される、実質的に精製された組換えHCVの単一の又は特定オリゴマーのエンベロープ蛋白に関する。 更に詳しくは、本発明は、ワクシニアのような組換え哺乳動物細胞から発現された組換えエンベロープ蛋白の精製又は単離に関する。 本発明はまた、組換え酵母細胞から発現された組換えエンベロープ蛋白の精製又は単離に関する。 本発明は同様に、組換え細菌(原核生物)細胞から発現された組換えエンベロープ蛋白の精製又は単離に関する。 本発明はまた、ベクター配列、適切な原核生物性、真核生物性もしくはウイルス性又は合成プロモーター配列、その後に続く本発明の単一の又は特定オリゴマーのE1及び/又はE2及び/又はE1/E2の発現を可能にするヌクレオチド配列を含む組換えベクターにも関する。 特に、本発明は、ベクター配列、適切な原核生物性、真核生物性もしくはウイルス性又は合成プロモーター配列、その後に続く本発明の単一のE1又はE1の発現を可能にするヌクレオチド配列を含む組換えベクターに関する。 特に、本発明は、ベクター配列、適切な原核生物性、真核生物性もしくはウイルス性又は合成プロモーター配列、その後に続く本発明の単一のE1又はE2の発現を可能にするヌクレオチド配列を含む組換えベクターに関する。 ベクター配列に挿入される目的のE1及び/又はE2配列をコードするHCV cDNAセグメントは、シグナル配列に結合させてもよい。該シグナル配列は、非HCV供給源由来のもの(例えば哺乳動物細胞中で発現させるためのIgG又は組織プラスミノーゲンアクチベーター(tpa)リーダー配列、又は酵母細胞で発現させるためのα−接合因子配列)でもよいが、本発明の特に好ましい構築物は、HCVゲノム中でE1及びE2蛋白の各開始点の前に現れるシグナル配列を含有する。ベクターに挿入される目的のE1及び/又はE2配列をコードするHCV cDNAセグメントはまた、例えば実施例に例示されたような疎水性ドメイン、又はE2超可変領域Iに欠失を有していてもよい。 更に詳しくは、本発明の組換えベクターは、HCVポリ蛋白のアミノ酸1位と192位の間の領域で開始し、250位と400位の間の領域で終わる、より好適には250位と341位の間の領域で終わる、更により好適には290位と341位の間の領域で終わる、ポリ蛋白をコードするHCV cDNAセグメントを有する、HCVの単一のE1蛋白の発現のための核酸を包含する。最も好適には、本発明の組換えベクターは、117位と192位の間の領域で開始し、263位と326位の間の領域中のいずれかの位置で終わる、HCVポリ蛋白の一部をコードするHCV cDNAセグメントを有する、HCVの単一のE1蛋白の発現のための組換え核酸を包含する。また本発明の範囲には、最初の疎水性ドメイン(264位〜293位プラス又はマイナス8アミノ酸)が欠失した形態、又は5’末端ATGコドンと3’末端停止コドンが加えられた形態、又は、第Xa因子切断部位を有し、及び/又は3〜10個、好適には6個のヒスチジンコドンが加えられた形態も含まれる。 更に詳しくは、本発明の組換えベクターは、HCVポリ蛋白のアミノ酸290位と406位の間の領域で開始し、600位と820位の間の領域で終わる、より好適には322位と406位の間の領域で開始する、更により好適には347位と406位の間の領域で開始する、更に尚好適には364位と406位の間の領域で開始する、ポリ蛋白をコードするHCV cDNAセグメントを有する、HCVの単一のE2蛋白の発現のための核酸を包含する。最も好適には、本発明の組換えベクターは、290位と406位の間の領域で開始し、623、650、661、673、710、715、720、746又は809位のいずれかの位置で終わるポリ蛋白をコードするHCV cDNAセグメントを有する、HCVの単一のE2蛋白の発現のための組換え核酸を包含する。また本発明の範囲には、5’末端ATGコドンと3’末端停止コドンが加えられた形態、又は、第Xa因子切断部位を有し、及び/又は3〜10個、好適には6個のヒスチジンコドンが加えられた形態も含まれる。 本発明のHCVの単一の又は特定オリゴマーのエンベロープ蛋白の組換え発現のために、種々のベクターが使用されうる。酵母及びグリコシル化突然変異株のような下等真核生物は、典型的には、プラスミド又は組換えウイルスで形質転換される。ベクターは、宿主内で独立に複製してもよく、又は宿主細胞ゲノム中に組み込まれてもよい。 高等真核生物は、ベクターで形質転換してもよく、又は組換えウイルス(例えば、組換えワクシニアウイルス)に感染させてもよい。ワクシニアウイルスへの外来DNAの挿入のための技術及びベクターは、当該分野で周知であり、例えば相同組換えが利用される。広範囲のウイルスプロモーター配列、おそらくターミネーター配列及びポリ(A)付加配列、場合によりエンハンサー配列及び増幅配列は、全て哺乳動物での発現に必要であるが、当該分野で利用可能である。ワクシニアは、宿主細胞蛋白の発現を停止させるため、ワクシニアは特に好適である。ワクシニアはまた、生きた組換えワクシニアウイルスで免疫した細胞又は個体中で、HCVのE1及びE2の発現を可能にするため、大変好ましい。ヒトの予防接種には、アビポックス(avipox)やアンカラ修飾ウイルス(Ankara Modified Virus)(AMV)が特に有用なベクターである。 バキュロウイルスのオートグラファ・カリホルニカ核多角体病ウイルス(Autographa californica nuclear polyhedrosis virus)(AcNPV)由来の昆虫発現移入ベクターも、公知であり、これは、ヘルパー非依存性ウイルス発現ベクターである。この系に由来する発現ベクターは、通常、異種遺伝子を発現させるのに、強力なウイルス性ポリヘドリン遺伝子プロモーターを使用する。バキュロウイルスでの発現のために、バキュロウイルスの目的の部位へ異種DNAを導入するための異なるベクター及び方法が、当業者に公知である。また、昆虫細胞に認識される翻訳後修飾の異なるシグナルも、当該分野で公知である。 本発明の範囲には、精製された組換えの単一の又は特定オリゴマーのHCVのE1又はE2又はE1/E2蛋白を生産するための方法も包含され、ここでは、凝集物形成に関与するシステイン残基は、凝集物形成が防止されるように核酸配列のレベルで他の残基で置換されている。このような突然変異したE1及び/又はE2蛋白をコードする核酸を有する組換えベクターにより発現される組換え蛋白もまた、本発明の範囲内にある。 本発明はまた、少なくとも1つのグリコシル化部位が除去されており、そのためグリコシル化突然変異体と呼ばれることを特徴とする、組換えE1及び/又はE2及び/又はE1/E2蛋白にも関する。実施例で例示されるように、問題の患者のHCV疾患を診断(スクリーニング、確認、予後など)及び防止するのに、異なるグリコシル化突然変異体が望まれることがある。例えば、GLY4の欠如したE2蛋白グリコシル化突然変異体は、診断における幾つかの血清の反応性を改良することが見いだされた。これらのグリコシル化突然変異体は、好適には本発明に開示された方法により精製される。本発明にはまた、このようなE1及び/又はE2及び/又はE1/E2グリコシル化突然変異体をコードする核酸挿入物(インサート)を有する組換えベクター、及びこのような組換えベクターにより形質転換された宿主細胞も、包含される。 本発明はまた、同様に本発明の一部を構成するポリヌクレオチドを含む組換えベクターにも関する。本発明は、更に詳しくは、配列番号3、5、7、9、11、13、21、23、25、27、29、31、35、37、39、41、43、45、47及び49に示される組換え核酸、又はこれらの部分に関する。 本発明はまた、前記で定義された組換えベクターで形質転換された宿主細胞をも包含し、ここで該ベクターは、前記で定義されたHCVのE1及び/又はE2及び/又はE1/E2蛋白をコードするヌクレオチド配列を、該HCVのE1及び/又はE2及び/又はE1/E2配列に作動可能に連結し、該HCVのE1及び/又はE2及び/又はE1/E2蛋白の発現を調節することができる制御配列に加えて含む。 真核生物宿主としては、定義の項に記載した下等又は高等真核生物が挙げられる。下等真核生物宿主は、当該分野で周知の酵母細胞を含む。高等真核生物宿主としては、主に当該分野で公知の哺乳動物細胞株があり、ATCCから入手できる多くの不死化した細胞株(例えばHeLa細胞、チャイニーズハムスター卵巣細胞(CHO)細胞、ベビーハムスター腎(BHK)細胞、PK15、RK13及び多くの他の細胞株)を含む。 本発明は、特に、前記で定義した組換えベクターを含有する前記で定義した宿主細胞により発現される組換えE1及び/又はE2及び/又はE1/E2蛋白に関する。これらの組換え蛋白は、特に、本発明の方法により精製される。 前記で定義したHCVエンベロープ蛋白を単離又は精製する好適な方法は、少なくとも以下の工程を含むことを更に特徴とする:− E1及び/又はE2及び/又はE1/E2HCVエンベロープ蛋白を発現する、本発明の組換えベクター又は公知の組換えベクターで形質転換した、前記で定義した宿主細胞を、適切な培地中で生育させ、− 適切な条件下で、前記で定義した該ベクター配列を発現させ、− 好適にはN−エチルマレイミド(NEM)のようなSH基保護剤、及び場合により(好適にはエンピゲン−BBである)適切な界面活性剤の存在下で、該形質転換宿主細胞を溶解し、− レクチンクロマトグラフィーあるいは抗E1及び/又は抗E2特異的モノクローナル抗体を用いる免疫親和性クロマトグラフィー(該レクチンは好適にはレンチルレクチン又はGNAである)のような親和性精製により、該HCVエンベロープ蛋白を回収し、次に− 前工程の溶出液をジスルフィド結合切断手段(例えば、DTT)とインキュベートし、好適には、引き続きSH基保護剤(例えば、NEM又はビオチン−NEM)とインキュベートして、そして− ゲル濾過、及び場合により引き続きNi2+−IMACクロマトグラフィー及び脱塩工程のような手段により、HCVの単一の又は特定オリゴマーのE1及び/又はE2及び/又はE1/E2蛋白を単離する。 前述の方法の結果として、実施例の項に記載のように、E1及び/又はE2及び/又はE1/E2蛋白は、ゲル濾過カラム又はIMACカラムのボイド容積中のベクター由来の成分及び/又は細胞成分を含有する大きな凝集物とは別に溶出する形態で生産されうる。ジスルフィド架橋切断工程は、有利にも、宿主及び/又は発現系由来の蛋白の存在に由来する擬反応性をも排除する。細胞の溶解の際のNEM及び適切な界面活性剤の存在は、HCVエンベロープ蛋白と夾雑物との凝集を、既に部分的に又は完全に防止しうる。 Janknecht ら、1991、及びHochuli ら、1988、が記載した(His)6 を有する構築物には、好適には、Ni2+−IMACクロマトグラフィー及びそれに続いて脱塩工程が使用される。 本発明はまた、本発明のHCVの単一の又は特定オリゴマーのエンベロープ蛋白を用いる、マウス又はラットのような小動物でモノクローナル抗体を生産する方法、及び抗HCV抗体を認識するヒトB細胞をスクリーニング及び単離する方法にも関する。 本発明は更に、第3表に記載の以下のE1ペプチドの少なくとも1つを含む組成物に関する:コア/E1V1領域のアミノ酸181〜200位にわたるE1−31(配列番号56)、E1領域のアミノ酸193〜212位にわたるE1−33(配列番号57)、E1V2領域のアミノ酸205〜224位にわたるE1−35(配列番号58)(エピトープB)、E1V2領域のアミノ酸208〜227位にわたるE1−35A(配列番号59)(エピトープB)、E1領域〔V1、C1及びV2領域(エピトープBを含有する)〕のアミノ酸192〜228位にわたる1bE1(配列番号53)、E1領域のアミノ酸301〜320位にわたるE1−51(配列番号66)、E1C4領域のアミノ酸313〜332位にわたるE1−53(配列番号67)(エピトープA)、E1領域のアミノ酸325〜344位にわたるE1−55(配列番号68)。 本発明はまた、第3表に記載の以下のE2ペプチドの少なくとも1つを含む組成物に関する:E2領域のアミノ酸397〜416位にわたるEnv67すなわちE2−67(配列番号72)(エピトープA、モノクローナル抗体2F10H10に認識される、第19図を参照)、E2領域のアミノ酸409〜428位にわたるEnv69すなわちE2−69(配列番号73)(エピトープA)、E2領域の583〜602位にわたるEnv23すなわちE2−23(配列番号86)(エピトープE)、E2領域の595〜614位にわたるEnv25すなわちE2−25(配列番号87)(エピトープE)、E2領域の607〜626位にわたるEnv27すなわちE2−27(配列番号88)(エピトープE)、E2領域の547〜566位にわたるEnv17BすなわちE2−17B(配列番号83)(エピトープD)、E2領域の523〜542位にわたるEnv13BすなわちE2−13B(配列番号82)(エピトープC、モノクローナル抗体16A6E7に認識される、第19図を参照)。 本発明はまた、以下のE2コンフォメーション性エピトープの少なくとも1つを含む組成物に関する:モノクローナル抗体15C8C1、12D11F1及び8G10D1H9により認識されるエピトープF、モノクローナル抗体9G3E6に認識されるエピトープG、モノクローナル抗体10D3C4及び4H6B2により認識されるエピトープH(又はC)、又は、モノクローナル抗体17F2C2に認識されるエピトープI。 本発明はまた、ペプチド又は蛋白組成物で免疫して作成されるE1又はE2特異的抗体にも関し、該抗体は、前記で定義したいずれかのポリペプチド又はペプチドと特異的に反応性であり、かつ該抗体は、好適にはモノクローナル抗体である。 本発明はまた、プラスミド若しくはファージの可変鎖ライブラリー又はヒトB細胞集団から、当該分野で公知の方法によりスクリーニングされたE1又はE2特異的抗体に関し、該抗体は、前記で定義した任意のポリペプチド又はペプチドと特異的に反応性であり、かつ該抗体は、好適にはモノクローナル抗体である。 本発明のE1又はE2特異的モノクローナル抗体は、前記で定義した本発明のHCVポリペプチド又はペプチドに対して免疫した動物(特に、マウス又はラット)の脾臓細胞を一方とし、そしてミエローマ細胞株の細胞を他方として、古典的な方法で作成され得、そして最初に動物の免疫に使用されたポリペプチドを認識するモノクローナル抗体を産生するハイブリドーマの能力により選択されうる、任意のハイブリドーマにより生産することができる。 本発明の抗体は、酵素型、蛍光型又は放射能型の適切な標識物により標識することができる。 本発明の好適な本実施態様のモノクローナル抗体は、マウス及び/又はヒトのcDNAからのH及びL鎖をコードするゲノムDNA配列あるいはH及びL鎖をコードするゲノムクローンの一部から出発して、組換えDNA技法により作成されるマウスモノクローナル抗体のヒト化型であってよい。 あるいは、本発明の好適な本実施態様のモノクローナル抗体は、ヒトモノクローナル抗体であってよい。本発明の本実施態様のこれらの抗体はまた、HCVに感染した患者又はHCVに対する予防接種を受けた患者のヒト末梢血リンパ球からも得られうる。このようなヒトモノクローナル抗体は、例えば重症複合免疫不全症(SCID)マウスのヒト末梢血リンパ球(PBL)再集団(repopulation)により、調製される(最近の総説については、Duchosalら、1992を参照)。 本発明はまた、レパートリークローニング(repertoire cloning)法(Persson ら、1991)による組換え抗体の選択のための、本発明の蛋白又はペプチドの使用に関する。 ある遺伝子型由来のペプチド又は単一の若しくは特定オリゴマーのエンベロープ蛋白に対する抗体は、薬剤(medicament) として使用することができ、更に詳しくは、HCV遺伝子型の検出(HCVのE1又はE2抗原の存在の検出)のための免疫測定法に組み込むために、HCV疾患の予知/監視のために、又は治療剤として、使用することができる。 あるいは、本発明はまた、生物学的試料中のE1又はE2抗原の存在の検出のための免疫測定法キットの調製、HCV疾患の予知/監視のためのキットの調製又はHCV薬剤の調製のための、前述の任意のE1又はE2特異的モノクローナル抗体の使用に関する。 本発明はまた、少なくとも以下の工程を含む、生物学的試料中に存在するHCV抗原のインビトロ診断又は検出の方法に関する:(i)免疫複合体の形成を可能にする適切な条件下で、好適には固定化された形で、前記で定義したE1及び/又はE2特異的モノクローナル抗体の任意のものに、該生物学的試料を接触させ、(ii)結合しなかった成分を除去し、(iii)形成された免疫複合体を、分析される試料中に存在する抗体に特異的に結合する異種抗体(この異種抗体は、適切な条件下で検出可能な標識物に結合されている)とインキュベートし、(iv)該免疫複合体の存在を、視覚的又は機械的に(例えば、デンシトメーター、蛍光測定、比色法により)検出する。 本発明はまた、− 好適には固体基材上に固定された、前記で定義した少なくとも1つのモノクローナル抗体、− これらの抗体と、生物学的試料中に存在するHCV抗原との間の結合反応を可能にする緩衝液又は前記緩衝液を作成するのに必要な成分、− 前述の結合反応で形成された免疫複合体を検出する手段、− 場合により観察された結合パターンから試料中に存在するHCV抗原を推定するための自動走査及び解釈装置、を含む、生物学的試料中に存在するHCV抗原のインビトロ診断のためのキットに関する。 本発明はまた、本発明の方法により精製されたE1及び/又はE2及び/又はE1/E2組換えHCV蛋白を含む組成物、又は薬剤として使用するための前述の少なくとも1つのペプチドを含む組成物に関する。 更に詳しくは、本発明は、場合により薬剤学的に許容しうる助剤(アジュバント)と一緒に、免疫応答を起こすのに充分な量の組成物を投与することを含む、HCVに対して哺乳動物(好適にはヒト)を免疫するワクチンとしての使用のための、前述のエンベロープペプチドの少なくとも1つを含む組成物又は前記で定義した組換えエンベロープ蛋白組成物に関する。 更に詳しくは、本発明は、前述のワクチンを調製するための、前述の任意の組成物の使用に関する。 また本発明は、前述のE1及び/又はE2領域から得られるHCVの単一の又は特定オリゴマーの蛋白又はペプチドを含む、HCVに対して哺乳動物(好適にはヒト)を免疫するためのワクチン組成物に関する。 免疫原性組成物は、当該分野で公知の方法により調製することができる。本組成物は、通常、薬剤学的に許容しうる担体と一緒になった、好適には助剤を更に含有する、免疫原性量の、前記で定義した組換えE1及び/又はE2及び/又はE1/E2の単一の又は特定オリゴマーの蛋白、又は前記で定義したE1又はE2ペプチドを含む。 E1又はE2に対する抗体の形成は、他のエンベロープ蛋白に対するものよりも好ましい可能性があるため、また、E2蛋白はHCVタイプ間で交差反応性があり、E1蛋白はタイプ特異的であるため、本発明の単一の又は特定オリゴマーのエンベロープ蛋白は、E1及び/又はE2及び/又はE1/E2のいずれであっても、特に有用なワクチン抗原になると予想される。1型のE2蛋白と幾つかの遺伝子型から得られるE1蛋白を含有するカクテルが、特に有利なことがある。E2に対してモル過剰のE1、又はE1に対してモル過剰のE2を含有するカクテルが、特に有利なこともある。免疫原性組成物は、抗体産生を誘導するため(抗体の供給源にするために、又は動物の防御免疫を誘導するため)に動物に投与してもよい。 薬剤学的に許容しうる担体は、組成物を投与される個体に対して有害な抗体の産生をそれ自体は誘導しない任意の担体を含む。好適な担体は、典型的には、大きくてゆっくり代謝される巨大分子(例えば、蛋白、多糖、ポリ乳酸、ポリグリコール酸、ポリマー性アミノ酸、アミノ酸コポリマー)、及び不活性なウイルス粒子である。このような担体は、当業者に周知である。 本組成物の効力を増強させる好適な助剤としては、以下のものが挙げられるが、これらに限定されない:水酸化アルミニウム(みょうばん)、米国特許第4,606,918号記載のN−アセチル−ムラミル−L−トレオニル−D−イソグルタミン(thr−MDP)、N−アセチル−ノルムラミル−L−アラニル−D−イソグルタミン(nor−MDP)、N−アセチルムラミル−L−アラニル−D−イソグルタミニル−L−アラニン−2−(1’,2’−ジパルミトイル−sn−グリセロ−3−ヒドロキシホスホリルオキシ)−エチルアミン(MTP−PE)及びRIBI〔これは、2%スクアレン/ツイーン(Tween)80エマルジョン中に、細菌から抽出された3つの成分、モノホスホリルリピッドA、トレハロースジミコラート、及び細胞壁骨格(MPL+TDM+CWS)を含有する〕。この3つの成分(MPL、TDM又はCWS)は、いずれかを単独で使用してもよいし、2つずつを組合せて使用してもよい。更に、スチムロン(Stimulon)〔ケンブリッジ・バイオサイエンス(Cambridge Bioscience)、マサチューセッツ州ウォーセスター(Worcester)〕、又はSAF−1〔シンテックス(Syntex)〕のような助剤を使用してもよい。更に、完全フロイントアジュバント(CFA)及び不完全フロイントアジュバント(IFA)は、ヒト以外での使用や研究目的に使用してもよい。 本免疫原性組成物は、典型的には、薬剤学的に許容しうる賦形剤(例えば、水、生理食塩水、グリセロール、エタノールなど)を含有する。更に、このような賦形剤は、湿潤剤、乳化剤、pH緩衝化物質、保存剤などの補助物質を含有してもよい。 典型的には、本免疫原性組成物は、注射剤として(液剤又は懸濁剤として)調製される。注射の前に、液体賦形剤へ溶解又は懸濁するのに適した固体形態を調製してもよい。この調製物はまた、助剤の効果を上げるために、乳化させるか、リポソーム中にカプセル化させてもよい。E1及びE2蛋白はまた、例えばQuil A(ISCOMS)のようなサポニンと共に免疫刺激性複合体(Immune Stimulating Complexes)に取り込ませてもよい。 ワクチンとして使用される免疫原性組成物は、「充分な量」又は「免疫学的に有効な量」の本発明のエンベロープ蛋白、及び必要に応じて任意の他の前述の成分を含む。「免疫学的に有効な量」とは、その量が、個体に投与されたとき(単一用量であれ、一連の用量の一部であれ)、前記で定義したように治療に有効であることを意味する。この量は、治療される個体の健康及び肉体的状態、治療される個体の分類学的位置(例えば、ヒトでない霊長類、霊長類など)、抗体を合成する個体の免疫系の能力、目的とする防御の程度、ワクチンの処方、担当医師による医学的状況の評価、感染HCVの株、及び他の関連因子により変わる。この量は、比較的広い範囲にあり、これは通常の試験により決定することができる。通常、この量は、0.01〜1,000μg/用量、特に0.1〜100μg/用量の間である。 単一の又は特定オリゴマーのエンベロープ蛋白は、B型肝炎表面抗原(ヨーロッパ特許出願第174,444号を参照)と同じように、同種(例えば、コア、NS2、NS3、NS4又はNS5領域からのT細胞エピトープ又はB細胞エピトープ)又は異種(非HCV)ハプテンを提示するためのワクチン担体として役立ててもよい。こうして使用する場合、エンベロープ蛋白は、凝集物に結合したハプテン又は抗原に対する免疫応答を刺激することができる免疫原性担体となる。抗原は、蛋白の親水性領域に対応する位置で、E1及び/又はE2をコードする遺伝子中にクローン化してもよく、従来法の化学的方法で結合させてもよい。このような親水性領域としては、V1領域(アミノ酸191〜202位にわたる)、V2領域(アミノ酸213〜223位にわたる)、V3領域(アミノ酸230〜242位にわたる)、V4領域(アミノ酸230〜242位にわたる)、V5領域(アミノ酸294〜303位にわたる)、及びV6領域(アミノ酸329〜336位にわたる)がある。ハプテンの挿入のための他の有用な位置は、疎水性領域(およそアミノ酸264〜293位にわたる)である。この領域は、ここに欠失を有するE1蛋白と抗血清との反応性に影響を与えずに欠失させうることが、本発明で示されている。したがって、ハプテンを欠失の部位に挿入してもよい。 本免疫原性組成物は、従来法の非経口投与、典型的には、例えば皮下又は筋内への注射により投与される。他の投与法に適した更なる製剤としては、経口製剤や坐剤が挙げられる。投与法は、単一用量スケジュール又は複数用量スケジュールでもよい。ワクチンは、他の免疫調節性の物質と共に投与してもよい。 本発明はまた、生物学的試料中に存在するHCV抗体のインビトロ検出のための、前記のペプチド又はポリペプチドを含む組成物に関する。 本発明はまた、生物学的試料中に存在するHCV抗体を検出するための免疫測定キットの調製のための、前述の組成物の使用に関する。 本発明はまた、少なくとも以下の工程を含む、生物学的試料中に存在するHCV抗体のインビトロ診断方法に関する:(i)免疫複合体の形成を可能にする適切な条件下で、好適には固定化された形で、前記で定義したエンベロープペプチド又は蛋白の任意のものを含む組成物に、該生物学的試料を接触させ(ここで、該ペプチド又は蛋白は、ストレプトアビジン又はアビジン複合体により固体基材に共有結合したビオチン化ペプチド又は蛋白であってもよい)、(ii)結合しなかった成分を除去し、(iii)形成された免疫複合体を、適切な条件下で検出可能な標識物に結合されている異種抗体とインキュベートし、(iv)該免疫複合体の存在を、視覚的又は機械的に(例えば、デンシトメーター、蛍光測定、比色法により)検出する。 あるいは、本発明はまた、生物学的試料中に存在するHCV抗体に関して競合するように、前記で開示した、組換えにより生産し精製した単一の又は特定オリゴマーの蛋白E1及び/又はE2及び/又はE1/E2蛋白を、E1及び/又はE2ペプチドと組合せて使用する、競合免疫測定法(フォーマット)に関する。 本発明はまた、− 場合によりHCV又は他のタイプのHCVからの他のポリペプチド又はペプチドと組合せた、好適には固体基材上に、より好適には同じELISAプレートの異なるマイクロウェル上に、更により好適には同じ膜ストリップ上に固定化された、前記で定義した少なくとも1つのペプチド又は蛋白組成物、− これらのポリペプチド又はペプチドと、生物学的試料中に存在するHCVに対する抗体との間の結合反応を可能にする緩衝液又は前記緩衝液を作成するのに必要な成分、− 前述の結合反応で形成された免疫複合体を検出する手段、− 場合により、観察された結合パターンから試料中に存在するHCV遺伝子型を推定するための自動走査及び解釈装置、を含む、生物学的試料中のHCV抗体の存在を測定するためのキットに関する。 本発明の免疫測定法は、HCVに感染した個体の血清中の抗体により認識される、直鎖エピトープ(ペプチドの場合)及びコンフォメーション性エピトープ(単一の又は特定オリゴマーの蛋白)を保持するE1及び/又はE2ドメインからの、単一の又は特定オリゴマーの抗原を用いる。例えば単一の又は特定オリゴマーの抗原、二量体性抗原、及び単一の又は特定オリゴマーの抗原の組合せを使用することは、本発明の範囲内である。本発明のHCVのE1及びE2抗原は、抗体の検出のために既知の抗原を用いる、実質的にあらゆる測定フォーマットに使用することができる。もちろん、HCVのコンフォメーション性エピトープを変性させるようなフォーマットは、避けるか又は適合させるべきである。これらの測定法の全てに共通の特徴は、HCV抗体を含有することが疑われる体成分に、抗原を、体成分中に存在する任意のそのような抗体への抗原の結合を可能にする条件下で接触させることである。このような条件は、典型的には、生理学的温度、pH及びイオン強度であり、過剰の抗原を使用する。試料と抗原とのインキュベーションの後に、抗原を含有する免疫複合体を検出する。 免疫測定法の設計は広い範囲の変更が可能であり、多くのフォーマットが当該分野で公知である。例えば、プロトコールは、固体支持体、又は免疫沈降法を用いることもある。ほとんどの測定法では、標識抗体又はポリペプチドを使用し、標識物は、例えば酵素、蛍光、化学発光、放射能、又は色素分子でもよい。免疫複合体からのシグナルを増幅する測定法も知られており、例としては、ビオチン及びアビジン又はストレプトアビジンを使用する測定法、及び酵素標識及び酵素介在免疫測定法(例えばELISA)などがある。 免疫測定法は、不均一系又は均一系フォーマットでもよく、及び標準型又は競合型でもよいが、これらに限定されない。不均一系フォーマットでは、インキュベート後のポリペプチドからの試料の分離を容易にするため、ポリペプチドは、典型的には固体マトリックス又は支持体に結合している。使用できる固体支持体の例としては、ニトロセルロース(例えば、膜又はマイクロタイターウェルの形態で)、塩化ポリビニル(例えば、シート又はマイクロタイターウェルで)、ポリスチレンラテックス(例えば、ビーズ又はマイクロタイタープレートで)、フッ化ポリビニリデン〔イムノロン(登録商標)(Immunolon)として知られている〕、ジアゾ化ペーパー、ナイロン膜、活性化ビーズ、及びプロテインAビーズなどがある。例えば、不均一系フォーマットで、ダイナテック(Dynatech)イムノロン(登録商標)(Immunolon)1又はイムノロン(登録商標)(Immunolon)2マイクロタイタープレート、又は0.25インチのポリスチレンビーズ〔プレシジョンプラスチックボール(Precision Plastic Ball)〕が使用できる。抗原性ポリペプチドを含有する固体支持体は、典型的には、被験試料から分離した後、かつ結合した抗体の検出の前に洗浄される。標準型フォーマット及び競合型フォーマットの両方が当該分野で公知である。 均一系フォーマットでは、被験試料は、溶液中で抗原の組合せとインキュベートされる。例えば、これは形成されるあらゆる抗原−抗体複合体を沈降させる条件下であってもよい。標準型フォーマット及び競合型フォーマットの両方が当該分野で公知である。 標準型フォーマットでは、抗体−抗原複合体中のHCV抗体の量を直接監視する。これは、抗HCV抗体上のエピトープを認識する標識した抗異種(例えば、抗ヒト)抗体が、複合体形成により結合するか否かを測定することにより行ってもよい。競合型フォーマットでは、試料中のHCV抗体の量は、複合体中の既知量の標識抗体(又は他の競合性リガンド)の結合への競合的影響を監視することにより推定される。 抗HCV抗体を含む形成された複合体(又は、競合的測定法の場合は、競合抗体の量)は、フォーマットに依存して、多くの既知の方法の任意のものにより検出される。例えば、複合体中の非標識HCV抗体は、標識物(例えば、酵素標識)と複合体を形成した抗異種Igのコンジュゲートを用いて検出することができる。 免疫沈降又は凝集測定フォーマットでは、HCV抗原と抗体との間の反応により、溶液又は懸濁液から沈殿するネットワークが形成され、肉眼で見える沈殿物の層又はフィルムが形成される。被験試料中に抗HCV抗体が存在しない場合は、肉眼で見える沈殿物が形成されない。 現在、3つの具体的な型の粒子凝集(PA)測定法が存在する。これらの測定法は、支持体にコーティングされて、種々の抗原に対する抗体の検出に使用される。この測定法の1つの型は、赤血球(RBC)に受動的に吸着している抗原(又は抗体)により感作された赤血球を使用する血球凝集測定法である。体成分中に存在する特異的な抗原抗体を添加すると(もし存在する場合)、精製抗原でコーティングされた赤血球の凝集が引き起こされる。 血球凝集測定法において非特異的反応の可能性を排除するために、PAでは赤血球の代わりに2つの人工担体を使用してもよい。これらのうち最も一般的なものは、ラテックス粒子である。しかし、ゼラチン粒子を使用してもよい。これらの担体のいずれかを使用する測定法は、精製した抗原でコーティングされた粒子の受動的凝集に基づいている。 コンフォメーション性エピトープを含む本発明のHCVの単一の又は特定オリゴマーのE1及び/又はE2及び/又はE1/E2抗原は、典型的には、これらの免疫測定法に使用するためのキットの形で包装される。キットは、通常、別々の容器に、未変性のHCV抗原、対照抗体調製物(陽性及び/又は陰性)、測定フォーマットに必要な場合には標識抗体、そして標識物が直接シグナルを生成しない場合にはシグナル生成試薬(例えば、酵素基質)を含有する。未変性の(ネイティブ)HCV抗原は、既に固体マトリックスに結合していてもよく、又はこれをマトリックスに結合させるために試薬と共に分離してあってもよい。測定法を実施するための取り扱い説明(例えば、印刷物、テープ、CD−ROMなど)は、通常、キットに含まれている。 未変性のHCV抗原を使用する免疫測定法は、感染の危険のあるHCVを含まない供給血液の調製のために、血液をスクリーニングするのに有用である。供給血液の調製法は、以下の工程を含む。供血者の体成分(好適には血液又は血液成分)を、本発明のHCVのE1及び/又はE2蛋白と反応させて、HCV抗体(もし存在すれば)とHCV抗原との間の免疫学的反応を起こさせる。反応の結果として抗HCV抗体−HCV抗原複合体が形成されるか否かを検出する。供給血液に使用される血液は、未変性のHCV抗原であるE1又はE2に対する抗体を示さない供血者からのものである。 HCV抗原に対する反応性が陽性である時は、擬陽性の可能性を減らすために免疫測定を繰り返すことが好ましい。例えば、血液製剤(例えば、輸血、血漿、第VIII因子、免疫グロブリンなど)の生産のための血液の大規模なスクリーニングでは、特異性を犠牲にして感度を上げる(汚染された血液が決して見逃されることがないようにするため)ようなフォーマットの「スクリーニング」試験が典型的に行われる。すなわち、擬陽性率は上昇する。したがって、典型的には、これらの供血者が「繰り返し反応性」(すなわち、提供された血液について2回以上の免疫測定の試験で陽性であること)であるかどうかという更なる試験に委ねる。しかし、HCV陽性の確認のためには、「確認」試験は、感度を犠牲にして特異性を上げる(擬陽性試料が陽性と判定されないようにするため)ようなフォーマットである。したがって、E1及びE2について本発明で記載した精製法は、HCV診断測定法に単一の又は特定オリゴマーのエンベロープ蛋白を含めるのに非常に有用である。 選択される固相としては、ポリマービーズ又はガラスビーズ、ニトロセルロース、微粒子、反応トレイのマイクロウェル、試験管及び磁性粒子などが挙げられる。シグナル生成化合物としては、酵素、発光化合物、色原体、放射性元素及び化学発光化合物が挙げられる。酵素の例としては、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ及びベータガラクトシダーゼがある。増強化合物としては、ビオチン、抗ビオチン及びアビジンが挙げられる。増強化合物を結合する化合物の例には、ビオチン、抗ビオチン及びアビジンがある。リウマチ因子様物質の影響を阻止するために、被験試料は、リウマチ因子様物質の影響を阻止するのに充分な条件に付される。これらの条件は、被験試料を一定量の抗ヒトIgGに接触させて混合物を生成させ、反応混合物からリウマチ因子様物質が実質的になくなるのに充分な時間と条件下で混合物をインキュベートすることを含む。 本発明は、更に、HCV感染患者のHCV疾患のインビトロ監視、又は治療(例えば、インターフェロンによる)に対する応答を予知するための、E1蛋白又はその部分、更に詳しくは前記で定義したHCVの単一の又は特定オリゴマーのE1蛋白の使用に関し、これは:− C型肝炎感染患者からの生物学的試料を、E1蛋白又はその好適な部分と、免疫学的複合体の形成を可能にする条件下でインキュベートし、− 結合しなかった成分を除去し、− 該試料中〔例えば、(インターフェロン)治療の開始時及び/又は治療中の〕に存在する抗E1力価を計算し、− 治療の開始時及び/又は治療中の該試料中の抗E1力価に基づき、HCV疾患の自然の経過を監視し、又は治療に対する患者の応答を予知する、ことを含む。 開始時の2倍、3倍、4倍、5倍、7倍、10倍、15倍、又は好適には20倍以上の抗E1力価の低下を示す患者は、HCV療法(更に詳しくは、インターフェロン療法)に対する、長期の持続性レスポンダー(応答者)と結論できるであろう。実施例には、抗E1測定法は、IFN治療又はC型肝炎ウイルス疾患一般の治療に対する長期の応答を予知するために非常に有用であることが示されている。 更に詳しくは、第3表に列挙した以下のE1ペプチドは、HCV感染患者のHCV疾患のインビトロ監視、又はインターフェロン治療に対する応答の予知に有用であることがわかった:コア/E1V1領域のアミノ酸181〜200位にわたるE1−31(配列番号56)、E1領域のアミノ酸193〜212位にわたるE1−33(配列番号57)、E1V2領域のアミノ酸205〜224位にわたるE1−35(配列番号58)(エピトープB)、E1V2領域のアミノ酸208〜227位にわたるE1−35A(配列番号59)(エピトープB)、E1領域〔V1、C1及びV2領域(エピトープBを含有する)〕のアミノ酸192〜228位にわたる1bE1(配列番号53)、E1領域のアミノ酸301〜320位にわたるE1−51(配列番号66)、E1C4領域のアミノ酸313〜332位にわたるE1−53(配列番号67)(エピトープA)、E1領域のアミノ酸325〜344位にわたるE1−55(配列番号68)。 前述のペプチドの小さい断片も、本発明の範囲内にあると理解すべきである。このような小さい断片は、化学合成により容易に調製することができ、前述のように及び実施例に記載のように、測定法に使用できる能力について試験することができる。 本発明はまた:− 少なくとも1つのE1蛋白又はE1ペプチド、更に詳しくは前記で定義したE1蛋白又はE1ペプチド、− これらの蛋白又はペプチドと、生物学的試料中に存在する抗E1抗体との間の結合反応を可能にする緩衝液を作成するのに必要な成分又は緩衝剤、− 前述の結合反応で形成された免疫複合体を検出する手段、− 場合により、治療の進行中の抗E1力価の低下を推定するための自動走査及び解釈装置、を含む、HCV感染患者のHCV疾患を監視、又は治療(例えばインターフェロン治療)に対する応答を予知するためのキットに関する。 他のHCV抗原に対する抗体に比較して抗E2レベルも低下するため、E1蛋白又はペプチドについて前記したように、本発明のE2蛋白及びペプチドも、HCV治療の監視/予知にある程度まで使用できると理解すべきである。しかし、HCV疾患の監視/予知のための試験に使用するのにも適したE2領域中の幾つかのエピトープを決定することは可能であることを理解すべきである。 本発明はまた、生物学的試料中に存在するHCVの1つ又はそれ以上の血清型を検出する、更に詳しくは検出すべきHCVの異なる型の抗体を検出するための、1つの測定フォーマットに組合せた血清型測定法に関し、これは、少なくとも以下の工程を含む:(i)免疫複合体の形成を可能にする適切な条件下で、好適には固定化された形で、E1及び/又はE2及び/又はE1/E2蛋白組成物の少なくとも1つ、あるいは前述のE1又はE2ペプチド組成物の少なくとも1つのものに、1つまたはそれ以上の血清型のHCV抗体の存在について分析すべき生物学的試料を接触させ、(ii)結合しなかった成分を除去し、(iii)形成された免疫複合体を、異種抗体(該異種抗体は、適切な条件下で検出可能な標識物に結合されている)とインキュベートし、(iv)該免疫複合体の存在を、視覚的又は機械的に(例えば、デンシトメーター、蛍光測定、比色法により)検出し、観察された結合パターンから1つ又はそれ以上のHCV血清型の存在を推定する。 この方法で使用される蛋白又はペプチドの組成物は、組換えにより発現された型特異的エンベロープ蛋白又は型特異的ペプチドであると理解すべきである。 本発明は、更に、− 前記で定義した少なくとも1つのE1及び/又はE2及び/又はE1/E2蛋白あるいはE1又はE2ペプチド− これらの蛋白又はペプチドと、生物学的試料中に存在する抗E1抗体との間の結合反応を可能にする緩衝液を作成するのに必要な成分又は緩衝剤、− 前述の結合反応で形成された免疫複合体を検出する手段、− 場合により、観察された結合パターンから1つ又はそれ以上の血清型の存在を検出するための自動走査及び解釈装置、を含む、生物学的試料中に存在するHCVの1つ又はそれ以上の血清型を分類する(serotyping)ための、更に詳しくはHCVのこれらの血清型に対する抗体を検出するためのキットに関する。 本発明はまた、前記で定義した方法によりHCVの有無又は遺伝子型を決定するために、固体基材上に固定化するための、及び逆相ハイブリダイゼーション測定法に取り込むための、好適には膜ストリップのような固体支持体上に平行の線状に固定化するための、前記で定義したペプチド又は蛋白組成物の使用に関する。他のHCVポリ蛋白領域からの他の型特異的抗原との組合せもまた、本発明の範囲内にある。表の凡例第1表:実施例1に記載したE1蛋白の異なる形態を作成するための増幅に使用した各クローン及びプライマーの特徴。第2表:抗E1試験の要約。第3表:競合試験用の合成ペプチド。第4表:エンベロープ抗体レベルの経時変化。第5表:LTRとNRの差。第6表:マウスE2モノクローナル抗体間の競合実験。第7表:E1グリコシル化突然変異体の構築のためのプライマー。第8表:E1グリコシル化突然変異体のELISAによる分析。実施例1:C型肝炎ウイルスE1蛋白のクローニングと発現1.ワクシニアウイルス組換えベクターの構築 pgptATA18ワクシニア組換えプラスミドは、pATA18(Stunnenberg ら、1988)を改変したものであり、ワクシニアウイルスI3中間プロモーターの制御下に大腸菌(E. coli)キサンチングアニンホスホリボシルトランスフェラーゼ遺伝子を含有する付加的な挿入体(インサート)を有する(第1図)。プラスミドpgsATA18は、3つの読み枠中に停止コドンを含有する配列番号1/94のオリゴヌクレオチドリンカーを、PstIとHindIIIで切断したpATA18ベクターに挿入して構築した。これにより余分のPacI制限部位が作成された(第2図)。元々のHindIII部位は保存されなかった。配列番号1/94を有するオリゴヌクレオチドリンカー: 組換え蛋白に融合した設計されたヒスチジンストレッチのNi2+キレート化により、迅速かつ効率的な精製を容易にするために、付加的なカルボキシ末端のヒスチジン付加部分(タッグ)を有する分泌蛋白を発現するように、ワクシニア組換えベクターpMS66を設計した。平滑末端を生成する3つの制限酵素(SmaI、StuI及びPmlI/BbrPI)のユニーク(単一)部位を含有する配列番号2/95のオリゴヌクレオチドリンカーを、任意のcDNAのカルボキシ末端が、蛋白分解酵素第Xa因子切断部位をコードする配列の後に6つのヒスチジンと2つの停止コドンをコードするヌクレオチド配列が続く枠(フレーム)に挿入されうるように合成した(3’末端の下流に、新しいPacI制限部位も導入された)。配列番号2/95を有するこのオリゴヌクレオチドを、pgptATA18のXmaI部位とPstI部位の間に導入した(第3図)。配列番号2/95を有するオリゴヌクレオチドリンカー:実施例2.HCV組換えプラスミドの構築2.1.異なる形態のE1蛋白をコードする構築物 血清試料から、既に記載されている(Stuyver ら、1993b )ように、RNAを調製し、次に逆転写とポリメラーゼ連鎖反応(PCR)を行って、PCR生成物を得た。第1表に、増幅に使用した各クローン及びプライマーの特徴を示す。PCR断片を、SmaIで切断したpSP72〔プロメガ(Promega)〕プラスミドにクローン化した。ワクシニア組換えベクターへの挿入のために、以下のクローンを選択した:HCCl9A(配列番号3)、HCCl10A(配列番号5)、HCCl11A(配列番号7)、HCCl12A(配列番号9)、HCCl13A(配列番号11)及びHCCl17A(配列番号13)(第21図に記載した)。各pSP72プラスミドから、EcoRIとHindIII制限酵素切断により、E1コード領域を含有するcDNA断片を切断し、EcoRI/HindIIIで切断したpgptATA−18ワクシニア組換えベクター(実施例1に記載)中に、11Kワクシニアウイルス後期プロモーターの下流に挿入した。各プラスミドを、pvHCV−9A、pvHCV−10A、pvHCV−11A、pvHCV−12A、pvHCV−13A及びpvHCV−17Aと命名した。このうち、pvHCV−11Aを第4図に示す。2.2.疎水性領域E1欠失突然変異体 コドンAsp 264〜Val 287(ヌクレオチド790〜861、疎水性ドメインIをコードする領域)が欠失しているクローンHCCl37を、以下のように作成した:HCPr52(配列番号16)/HCPr107(配列番号19)とHCPr108(配列番号20)/HCPR54(配列番号18)のプライマーセットを用いて、クローンHCCl10Aから2つのPCR断片を作成した。これらのプライマーを第21図に示す。この2つのPCR断片を、電気泳動後、アガロースゲルから精製し、各断片1ngをプライマーHCPr52(配列番号16)とHCPr54(配列番号18)を用いるPCRの鋳型として一緒に使用した。得られた断片を、SmaIで切断したpSP72ベクターにクローン化し、欠失を有するクローンは、24コドン(72塩基対)が欠失しているために容易に同定できた。クローンHCCl37(配列番号15)を含有するプラスミドpSP72HCCl37を選択した。欠失のまわりのHCV配列(ベクターpSP72−HCCl37からXmaIとBamHIにより切断された断片)を、ワクシニアプラスミドpvHCV−10AのXmaI−BamHI部位に挿入することにより、疎水性ドメインIの欠如した全長E1cDNAを含有する組換えワクシニアプラスミドを構築した。得られたプラスミドを、pvHCV−37と命名した。確認のための配列決定の後、内部欠失を有するアミノ末端領域を、このベクターpvHCV−37から単離(EcoRIとBstEIIにより切断)し、EcoRIとBstEIIで切断したpvHCV−11Aプラスミドに再挿入した。この構築物は、両方の疎水性ドメインが欠失したE1蛋白を発現すると予測され、pvHCV−38と命名した。クローンHCCl38のE1をコードする領域を、配列番号23に示す。 E1カルボキシ末端の親水性領域(理論的にはアミノ酸337〜340辺りまで伸びている)は、構築物pvHCV−38に完全には含まれていないため、pvHCV−37プラスミドからEcoRI/BamHI切断により疎水性ドメインIの欠如した大きなE1領域を単離し、EcoRI/BamHIで切断したpgsATA−18ベクター中にクローン化した。得られたプラスミドを、pvHCV−39と命名した。これはクローンHCCl39(配列番号25)を含有していた。BamHIによりpvHCV−37ベクターから同じ断片を切断し〔その粘着末端はクレノウDNAポリメラーゼI(ベーリンガー(Boehringer))で充填した〕、そして次にEcoRI(5’粘着末端)で切断した。この配列を、EcoRIとBbrPIで切断したベクターpMS−66に挿入した。こうして、カルボキシ末端に6つのヒスチジンのテールを含有する、プラスミドpvHCV−40中のクローンHCCl40(配列番号27)を得た。2.3.他の遺伝子型のE1 慢性C型肝炎の3a型感染患者(血清BR36、クローンBR36−9−13、WO 94/25601中の配列番号19、及びStuyver ら、1993a も参照)からクローンHCCl62(配列番号29)を得、輸血後肝炎の5a型感染小児(血清BE95、クローンPC−4−1、WO 94/25601中の配列番号45)からHCCl63(配列番号31)を得た。2.4.E2構築物 血清BE11(遺伝子型1b)から、プライマーHCPr109(配列番号33)とHCPr72(配列番号34)により、Stuyver ら、1993b に記載されたようにRNA調製、逆転写及びPCR法を用いて、HCVのE2PCR断片22を得、この断片をSmaIで切断したpSP72ベクターにクローン化した。クローンHCCl22A(配列番号35)をNcoI/AlwNI又はBamHI/AlwNIで切断し、断片の粘着末端を平滑末端にした〔NcoI部位及びBamHI部位はクレノウDNAポリメラーゼI(ベーリンガー(Boehringer)で、AlwNI部位はT4DNAポリメラーゼ(ベーリンガー(Boehringer))で〕。次に、EcoRIとHindIIIでの切断により線状にし、粘着末端をクレノウDNAポリメラーゼ〔ベーリンガー(Boehringer)〕で充填したワクシニアpgsATA−18ベクターに、このBamHI/AlwNI cDNA断片を挿入した。得られたプラスミドを、pvHCV−41と命名した。これは、シグナル配列として作用しうるE1蛋白の37アミノ酸(Met 347〜Gly 383)を含有する、アミノ酸Met 347〜Gln 673のE2領域をコードしていた。EcoRIと BbrPIで切断した後、クレノウDNAポリメラーゼで平滑末端としたベクターpMS66に、同じHCV cDNAを挿入した。得られたプラスミドをpvHCV−42と命名した。これはアミノ酸347〜683をコードしていた。NcoI/AlwNI断片を、同様の方法で、pgsATA−18(pvHCV−43)又はpMS−66ワクシニアベクター(pvHCV−44)の同じ部位に挿入した。pvHCV−43とpvHCV−44は、HCVポリ蛋白のアミノ酸364〜673をコードしており、このうちアミノ酸364〜383は、E2のシグナル配列をコードするE1蛋白の天然のカルボキシ末端領域由来であり、アミノ酸384〜673は、成熟E2蛋白由来である。2.5.組換えHCV−ワクシニアウイルスの作成 ウサギ腎RK13細胞(ATCC CCL37)、ヒト骨肉腫143Bチミジンキナーゼ欠損(TK- )(ATCC CRL8303)、HeLa(ATCC CCL2)及びHepG2(ATCC HB8065)細胞株は、アメリカンタイプカルチャーコレクション(ATCC、ロックヴィル、メリーランド州、アメリカ合衆国)から得た。RK13と143B(TK- )についてはアールの塩類(Earle's salts)(EMEM)と共に、HepG2についてはグルコース(4g/l)と共に、10%ウシ胎児血清を補足したダルベッコー改変イーグル培地(DMEM)中で、細胞を生育させた。既に記載されている(Panicali & Paoletti 、1982;Piccini ら、1987;Mackett ら、1982、1984、及び1986)ように、ワクシニアウイルスWR株〔ウェスタンリザーブ(Western Reserve)、ATCC VR119〕を、143B又はRK13細胞中で通常通り増殖させた。143B細胞のコンフルエントな単層に、感染多重度(m.o.i.)0.1〔=0.1プラーク形成単位(PFU)/細胞〕で野性型ワクシニアウイルスを感染させた。2時間後、500ngのプラスミドDNAを含有するリン酸カルシウム共沈殿物の形で、ワクシニア組換えプラスミドを感染細胞にトランスフェクションして、相同組換えを起こさせた(Graham & van der Eb 、1973;Mackett ら、1985)。選択培地〔ミコフェノール酸(mycophenolic acid)(MPA)25μg/ml、キサンチン250μg/ml、及びヒポキサンチン15μg/mlを含有するEMEM;Falkner and Moss、1988;Janknecht ら、1991〕中でインキュベートしたウサギ腎RK13細胞上で、大腸菌(Escherichia coli)キサンチン−グアニンホスホリボシルトランスフェラーゼ(gpt)を発現する組換えウイルスを選択した。選択培地中で0.9%アガロース重層下で、RK13細胞の新鮮な単層上で単一の組換えウイルスを精製した。チミジンキナーゼ欠損(TK- )組換えウイルスを選択し、次に5−ブロモ−2’−デオキシウリジン25μg/mlの存在下で、ヒト143B細胞(TK- )の新鮮な単層上でプラークを精製した。精製した組換えHCV−ワクシニアウイルスの原液を、m.o.i.0.05でヒト143B細胞又はウサギRK13細胞に感染させることにより調製した(Mackett ら、1988)。組換えワクシニアウイルス中のHCV cDNA断片の挿入は、各HCV断片(第1表を参照)をクローン化するために使用したプライマーを用いるPCRにより、MPA選択後の細胞溶解物の一定分量(50μl )で確認した。組換えワクシニア−HCVウイルスを、ワクシニア組換えプラスミド番号に従って命名した。例えば、組換えワクシニアウイルスvvHCV−10Aは、野性型WR株をpvHCV−10Aプラスミドで組換えすることにより得た。実施例3:組換えワクシニアウイルスによる細胞の感染 RK13細胞のコンフルエントな単層を、実施例2に記載したようにm.o.i.3で組換えHCV−ワクシニアウイルスに感染させた。感染のためには、細胞単層をリン酸緩衝化生理食塩水、pH7.4(PBS)で2回洗浄し、組換えワクシニアウイルス原液をMEM培地で希釈した。m.o.i.が3になるように、106 個の細胞につきウイルス溶液200μl を添加し、24℃で45分間インキュベートした。ウイルス溶液を吸引し、106 個の細胞につき完全増殖培地2ml(実施例2を参照)を加えた。細胞を37℃で24時間インキュベートし、この間にHCV蛋白を発現させた。実施例4:ウェスタンブロッティングによる組換え蛋白の分析 感染細胞をPBSで2回洗浄し、溶解緩衝液〔50mMトリス−塩酸、pH7.5、150mM NaCl、1%トリトンX−100、5mM MgCl2 、1μg/mlアプロチニン(シグマ(Sigma)、ボルネム(Bornem)、ベルギー)〕で直接溶解するか、又は50mMトリス−塩酸、pH7.5/10mM EDTA/150mM NaCl中で5分間インキュベートしてフラスコからはがして、遠心分離(1000gで5分間)により回収した。次に、細胞ペレットを、106 個の細胞につき200μl の溶解緩衝液(50mMトリス−塩酸、pH8.0、2mM EDTA、150mM NaCl、5mM MgCl2 、アプロチニン、1%トリトンX−100)に再懸濁した。エッペンドルフ遠心分離機で14,000rpm で5分間遠心分離して、細胞溶解物から不溶性の破片を除去して清澄にした。ドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動(SDS−PAGE)により、20μl の溶解物の蛋白を分離した。次に、トランスファー緩衝液〔25mMトリス−塩酸、pH8.0、192mMグリシン、20%(v/v)メタノール〕中で、4℃に冷却したヘーファー(Hoefer)HSIトランスファー装置を用いて100V(定電圧)で2時間、蛋白をゲルからニトロセルロースシート〔アマーシャム(Amersham)〕に電気的にトランスファーした。ニトロセルロースフィルターをブロット液(Blotto)〔PBS中の5%(w/v)脱脂インスタントミルク粉末;Johnson ら、1981〕でブロッキング処理し、ブロット液/0.1%ツイーン(Tween)20で希釈した一次抗体とインキュベートした。非特異結合を減らすために、通常、ヒト陰性対照血清又はHCV感染患者血清を200倍希釈し、200倍希釈した野性型ワクシニアウイルス感染細胞溶解物と室温で1時間プレインキュベートした。ブロット液/0.1%ツイーン20で洗浄後、ニトロセルロースフィルターを、ブロット液/0.1%ツイーン20で希釈したアルカリホスファターゼ基質溶液とインキュベートした。PBS中の0.1%ツイーン20で洗浄後、フィルターをアルカリホスファターゼ基質溶液(100mMトリス−塩酸、pH9.5、100mM NaCl、5mM MgCl2 、0.38μg/mlニトロブルーテトラゾリウム、0.165μg/ml 5−ブロモ−4−クロロ−3−インドリルホスフェート)とインキュベートした。電気的トランスファー以外の全ての操作は、室温で行った。実施例5:組換えE1又はE2蛋白の精製5.1.溶解 感染したRK13細胞(E1又はE2構築物を有する)をリン酸緩衝化生理食塩水(PBS)で2回洗浄し、10mM EDTAを含有するPBS中でインキュベートして培養レシピエントからはがした。はがした細胞をPBSで2回洗浄し、4℃で、105 個の細胞につき、2mM ビオチン化N−エチルマレイミド(ビオチン−NEM)〔シグマ(Sigma)〕を含有する溶解緩衝液〔50mMトリス−塩酸、pH7.5、150mM NaCl、1%トリトンX−100、5mM MgCl2 、1μg/mlアプロチニン(シグマ(Sigma 、ボルネム(Bornem)、ベルギー)〕1mlを加えた。この溶解物を、B型ダウンサー(douncer)でホモゲナイズし、室温で0.5時間放置した。一次溶解物に、10mM N−エチルマレイミド〔NEM、アルドリッチ(Aldrich)、ボルネム(Bornem)、ベルギー〕を含有する溶解緩衝液5倍量を更に加え、この混合物を室温で15分間放置した。ベックマンJA−14ローター中で14,000rpm (rmax で30,100g)で4℃で1時間遠心分離して、溶液から不溶性細胞破片を除去して清澄にした。5.2.レクチンクロマトグラフィー カラムの5倍量の溶解緩衝液で流速1 ml/分で平衡化させた0.8×10cmのレンチルレクチンセファロース4Bカラム〔ファルマシア(Pharmacia)〕に、清澄化した細胞溶解物を流速1 ml/分でのせた。レンチルレクチンカラムをカラムの5〜10倍量の緩衝液1〔0.1M リン酸カリウム、pH7.3、500mM KCl、5%グリセロール、1mM 6−NH2 −ヘキサン酸、1mM MgCl2 、及び1%デシルPEG(DecylPEG)(クワント(KWANT)、ベヅム(Bedum)、オランダ)〕で洗浄した。ある実験では、次にカラムを、1%デシルPEG(DecylPEG)の代わりに0.5%エンピゲン−BB〔カルビオケム(Calbiochem)、カリフォルニア州サンディエゴ、米国〕を含有するカラムの10倍量の緩衝液1で洗浄した。溶出緩衝液(10mMリン酸カリウム、pH7.3、5%グリセロール、1mMヘキサン酸、1mM MgCl2 、0.5%エンピゲン−BB、及び0.5M α−メチル−マンノピラノシド)を適用して、結合物質を溶出した。溶出した物質を分画し、実施例6に記載のようにELISAを用いて、画分を、E1又はE2の存在についてスクリーニングした。第22図に、vvHCV39(1b型)、vvHCV40(1b型)、vvHCV62(3a型)、及びvvHCV63(5a型)で感染させた細胞溶解物の4つの異なるE1精製物の、レンチルレクチン溶出画分から得られたELISA結果を示す。第23図に、第22図に示した値から得られたプロフィールを示す。これらの結果は、異なる型のHCVのエンベロープ蛋白についてレクチン親和性カラムを使用できることを示している。5.3.濃縮及び部分的還元 E1陽性又はE2陽性画分をプールし、ベックマンJA−20ローター中で4℃で5,000rpm で3時間遠心分離し、セントリコン(Centricon)30kDa 〔アミコン(Amicon)〕で濃縮した。ある実験では、E1陽性又はE2陽性画分をプールし、窒素蒸発により濃縮した。3×108 個の細胞相当量を約200μl に濃縮した。部分的還元のために、この200μl に、最終濃度3.5%になるように30%エンピゲン−BB〔カルビオケム(Calbiochem)、カリフォルニア州サンディエゴ、米国〕を加え、次に最終濃度1.5〜7.5mMになるように1M DTT水溶液を加え、37℃で30分間インキュベートした。次に、NEM(ジメチルスルホキシド中、1M)を最終濃度50mMになるように加え、更に37℃で30分間反応させて遊離のスルフヒドリル基をブロックした。5.4.ゲル濾過クロマトグラフィー スーパーデックス(Superdex)−200HR10/20カラム〔ファルマシア(Pharmacia)〕を、カラムの3倍量のPBS/3%エンピゲン−BBで平衡化させた。還元混合物をスマートシステム(Smart System)〔ファルマシア(Pharmacia)〕の500μl 試料ループに注入し、PBS/3%エンピゲン−BB緩衝液を加えてゲル濾過した。V0 からVt まで250μl の画分を集めた。実施例6に記載のように、画分をE1蛋白又はE2蛋白の存在についてスクリーニングした。 第24図に、vvHCV39(1b型)、vvHCV40(1b型)、vvHCV62(3a型)、及びvvHCV63(5a型)で感染させた細胞溶解物の4つの異なるE1精製物の、ゲル濾過クロマトグラフィー後に得られた画分から得られたELISA結果を示す。第25図に、1b型、3a型及び5a型(それぞれ、vvHCV39、vvHCV62及びvvHCV63で感染させたRK13細胞からのもの;レンチルレクチンで精製し、前記実施例のように還元した)のE1蛋白の精製物から得られたプロフィールを示す。「1」、「2」、「3」で示したピークは、純粋なE1蛋白ピークを示す(E1反応性は主に画分26〜30にあった)。これらのピークは、二量体性E1蛋白に対応する約70kDa の非常に似通った分子量を示した。3つのプロフィール中の他のピークは、実施例5.3.に概説した還元工程によってのみ、また適正な界面活性剤の存在下での以後のゲル濾過工程によってのみ、E1から分離することができた、ワクシニアウイルス及び/又は細胞性蛋白である。第26図に示すように、プール1(画分10〜17を示す)とプール2(画分18〜25を示す)は、E1プール(画分26〜30)には存在しない夾雑蛋白を含有する。E1ピーク画分をSDS−PAGEにかけ、実施例4に記載のようにブロッティングした。第27図に示すように、NEM−ビオチンで標識した蛋白をストレプトアビジン−アルカリホスファターゼにより検出した。特にゲル濾過クロマトグラフィーの前に存在する29kDa と45kDa の夾雑蛋白(レーン1)が、画分26〜30では非常に低レベルでしか存在しないことが、容易に観察することができる。約65kDa のバンドは、完全にはモノマーE1形態には分解されないE1二量体形態を示す。3a型E1蛋白(レーン10〜15)について同様の結果が得られた。これは、6個の炭水化物ではなく5個の炭水化物のみしか存在しないため、SDS−PAGEでより速い移動度を示す。第28図に、第26図と同一条件下で実施したSDS−PAGE実験の銀染色を示す。精製操作の全体像を第29図に示す。 精製したE1蛋白の存在を、実施例4に記載のようにウェスタンブロッティングにより更に確認した。二量体性E1蛋白は、凝集せず、夾雑物質がないように見える。前述のスキームに従ってvvHCV40感染細胞から精製したサブタイプ1bのE1蛋白を、477パーキンエルマー(Perkins-Elmer)シーケンサーでアミノ末端から配列決定して、最初の残基としてチロシンを含有しているらしいことが判った。このことにより、E1蛋白が正しい位置(A191とY192の間)でシグナルペプチダーゼによりそのシグナル配列から切断されたことが確認された。これにより、成熟E1蛋白のアミノ末端はアミノ酸192位で開始するというHijikataら(1991)の知見が確認される。5.5.E2蛋白の精製 実施例5.1.〜5.4.に示すように、vvHCV44に感染したRK13細胞から、E2蛋白(アミノ酸384〜673)を精製した。第30図に、レンチルレクチンクロマトグラフィーのOD280 プロフィール(連続線)を示す。点線は、ELISA(実施例6を参照)で検出されたE2反応性を示す。第31図に、レンチルレクチンE2プール(第30図を参照)(その一部は実施例5.3.に記載の方法に従い還元してブロックしたものであり、また一部は直ちにカラムに適用したものである)のゲル濾過クロマトグラフィーから得られた同じプロフィールを示す。E2プールの両方の部分を別々のゲル濾過カラムにかけた。還元をしない場合、E2は夾雑蛋白と共有結合凝集物を生成することが証明できた。還元とブロッキングの後、夾雑蛋白の大部分はV0 画分に集まった。E2蛋白と一緒に精製された他の夾雑蛋白は、以後の工程で除去できたため、もはやE2蛋白に共有結合していなかった。第32図に、E2蛋白精製について実施した付加的なNi2+−IMAC精製工程を示す。この親和性精製工程では、vvHCV44から発現されたE2蛋白に付加された6個のヒスチジン残基を使用した。夾雑蛋白は、カラムから流れ出すか、又は30mMイミダゾール洗浄により除去することができた。第33図に、0.5μg の精製E2蛋白と30mMイミダゾール洗浄物の銀染色したSDS/PAGEを示す。純粋なE2蛋白は、200mMイミダゾール溶出工程により容易に回収することができた。第34図に、イミダゾールを除去して目的の緩衝液(例えば、PBS、炭酸緩衝液、生理食塩水)に変更することができることを目的とした付加的な脱塩工程を示す。 E1の産生のためにvvHCV11A(又はvvHCV40)で、又はE2蛋白の産生のためにvvHCV41、vvHCV42、vvHCV43若しくはvvHCV44で感染させた、約50,000cm2 のRK13細胞から出発して、実施例5.1〜5.5に記載の方法により、約1.3mgのE1蛋白と0.6mgのE2蛋白を得ることができた。 (予想に反して)分泌されたE2蛋白(約30〜40%を構成し、60〜70%は細胞内形態である)は、凝集物を形成したことで特徴付けられることにも注目すべきである。したがって、分泌されたE2を精製するにも同じ問題があった。分泌されたE2は前述のように精製することができた。実施例6:抗E1若しくは抗E2抗体の検出又はE1若しくはE2蛋白の検出のためのELISA マクシソルブ(Maxisorb)マイクロウェルプレート〔ヌンク(Nunc)、ロスキルデ(Roskilde)、デンマーク〕を、1ウェル当たりPBS中5μg/mlのストレプトアビジン〔ベーリンガーマンハイム(Boehringer Mannheim)〕溶液1部(例えば、50μl 又は100μl 又は200μl)で、4℃で16時間又は37℃で1時間、コーティングした。あるいは、ウェルを、50mM炭酸ナトリウム緩衝液、pH9.6中5μg/mlガランタス・ニバリス・アグルチニン(Galanthus nivalis agglutinin)(GNA)1部で、4℃で16時間又は37℃で1時間、コーティングした。GNAによるコーティングの場合は、プレートをイノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕の洗浄液(Washing Solution)400μl で2回洗浄した。非結合コーティング表面は、1.5〜2部のブロッキング溶液(PBS中0.1%カゼイン及び0.1%NaN3)で、37℃で1時間又は4℃で16時間、ブロッキングした。ブロッキング溶液を吸引した。精製したE1又はE2は100〜1,000ng/ml (濃度はA=280nmで測定した)に希釈し、あるいはE1若しくはE2についてスクリーニングすべきカラム画分(実施例5を参照)又は精製していない細胞溶解物(実施例5.1.)中のE1若しくはE2は、ブロッキング溶液で20倍希釈し、各ウェルに1部のE1又はE2溶液を加え、ストレプトアビジン又はGNAでコーティングしたプレート上で、37℃で1時間インキュベートした。マイクロウェルをイノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕の洗浄液1部で3回洗浄した。イノテスト(Innotest)HCV AbIIIキットの試料希釈液(Sample Diluent)で、血清試料は20倍希釈し、又はモノクローナル抗E1若しくは抗E2抗体は20ng/ml の濃度に希釈し、この溶液1部をE1又はE2蛋白と37℃で1時間反応させた。マイクロウェルを、イノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕の洗浄液400μl で5回洗浄した。イノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕のコンジュゲート希釈液(Conjugate Diluent)1部で、1/80,000希釈したヤギ抗ヒト又は抗マウスIgGペルオキシダーゼ結合二次抗体〔ダコ(DAKO)、グロストルップ(Glostrup)、デンマーク〕で、37℃で1時間インキュベートし、プレートを、イノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕の洗浄液400μl で3回洗浄後、イノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕の基質溶液(Substrate Solution)1部で100倍希釈した、イノテスト(Innotest)HCV AbIIIキット〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕の基質を24℃で30分間添加して得られた発色により、結合した抗体を検出した。実施例7:異なる臨床プロフィールを有する患者群の追跡7.1.抗E1及び抗E2抗体の監視 現在のC型肝炎ウイルス(HCV)診断方法は、HCV抗体の存在のスクリーニングと確認のために開発された。このような測定法は、治療の監視や疾患の予後の予知のために有用な情報を与えないようである。しかし、B型肝炎の場合のように、臨床の場においては抗エンベロープ抗体の検出及び定量がより有用なことがある。C型肝炎ウイルス疾患の予後の予知マーカーとしての抗E1抗体力価及び抗E2抗体力価の使用の可能性を探るために、IFN−α治療で長期持続性の応答を示す一連の患者〔治療後少なくとも1年の期間、血液中のトランスアミナーゼレベルは正常であり、HCV−RNA試験(5’非コード領域のPCR)が陰性である患者と定義する〕を、応答を示さないか又は治療の最後に再発の生化学的応答を示す患者と比較した。 IFN−α治療で長期持続性の応答を示す一群8名の患者(LTR、1〜3.5年追跡、3a型が3名と1b型が5名)を、治療に完全には応答しない9名の患者(NR、1〜4年追跡、1b型が6名、3a型が3名)と比較した。1b型(vvHCV−39、実施例2.5.参照)と3a型(vvHCV−62、実施例2.5.参照)のE1蛋白を、ワクシニアウイルス系(実施例3及び4を参照)で発現させ、均一になるまで精製した(実施例5)。実施例6に記載のELISAで、1b型C型肝炎ウイルスに感染している患者から得られた試料を、精製した1b型E1蛋白との反応性について試験し、一方、3a型感染の試料を抗3a型E1抗体の反応性について試験した。異なる患者に感染しているC型肝炎ウイルスの遺伝子型を、イノリパ(Inno-LiPA )遺伝子型測定法〔インノジェネティックス(Innogenetics)、ズウィジンドレヒト(Zwijndrecht)、ベルギー〕により測定した。第5図に、インターフェロン治療中及び治療後の追跡期間中の、これらの患者の抗E1シグナル対ノイズ比を示す。LTR症例では抗E1レベルが一貫して急速に低下している(3症例では完全に陰性化)が、一方、NR症例の抗E1レベルはほぼ一定値のままだった。得られた抗E1データの一部を、平均S/N比±SD(平均抗E1力価)として第2表に示す。第5、第6、第7及び第8図に示すように、抗E1力価を、シグナル対ノイズ比から求めることができた。 2つの群の間には、既に治療の最後の段階で著しい差が認められた。LTRでは抗E1抗体力価は6.9倍低下したが、NRではわずかに1.5倍の低下であった。追跡の最後の段階では、持続性応答の患者では抗E1力価は22.5倍低下したが、NRではわずかながら上昇した。したがって、これらの結果に基づくと、IFN−α治療の監視中の抗E1抗体レベルの低下は、治療に対する長期の持続性応答と相関した。抗E1測定法は、IFN治療、又はC型肝炎疾患の治療一般に対する長期応答の予知に非常に有用でありうる。 この知見は予測しないことだった。これに反して、本発明者らは、長期応答患者ではIFN治療中に抗E1抗体レベルが上昇することを予測していた。B型肝炎の場合には、抗HBsAg抗体についての血清変換の結果としてウイルスが消失する。また他の多くのウイルス感染では、抗エンベロープ抗体が生成されるとウイルスが排除される。しかし、本発明の実験では、治療に対する長期応答患者では抗E1抗体は明らかに低下し、一方、非応答患者ではこの抗体レベルはほぼ一定値を維持した。これらの実験の結果は予測されていなかったが、この明白ではない結果は、HCV感染の臨床診断に非常に重要かつ有用である可能性がある。第9、第10、第11及び第12図に示すように、抗E2レベルは、試験した同じ患者でも非常に異なって挙動し、抗E1抗体のように明白な力価の低下は観察されなかった。第35図には、このパイロット試験の全体像を示す。 第2表から推定できるように、治療に対する不完全応答者に比較して、長期応答者では、治療の開始時に、抗E1力価は平均で少なくとも2倍高かった。したがって、治療の開始時に抗E1抗体の力価を測定すること、又は感染の間に患者を監視し、抗E1力価を測定することは、C型肝炎の臨床診断の有用なマーカーとなり得る。更に、実施例7.3.に示すように、E1又はE2蛋白のより規定された領域の使用が好ましい可能性がある。7.2.より大きな患者コホートにおけるE1及びE2抗体の解析 このパイロット試験から、本発明者らは、感染が完全に消失した場合、HCVエンベロープ蛋白に対する抗体は、より通常試験されるHCV抗原に対する抗体より急速に変化し、E1抗体が最も激しく変化する、と結論した。したがって、我々は、より多くの1b型及び3a型感染LTRを入れ、さらに対応する(マッチさせた)シリーズのNRをコホートに補足して、両群に14名ずつの患者が含まれるようにした。数名の部分的応答者(PR)と再発を有する応答者(RR)も解析した。 第36図に、LTR群及びNR群の平均E1抗体(E1Ab)及びE2抗体(E2Ab)レベルを示し、第4及び第5表に統計解析を示す。この大きなコホートにおいて、IFN−α治療前の高いE1Abレベルは、LTRに関連していた(P<0.03)。3a型感染患者においては1b型感染患者群よりはるかに高いE1抗体レベルが観察された(第37図)ため、遺伝子型を考慮した(第4表)。1b型感染群では、治療の開始時にもLTRはNRよりE1抗体レベルが高かった〔P<0.05〕。3a型感染NRの数は少ないため、統計解析ができなかった。 1.5年の追跡期間中、LTRで監視した抗体レベルのうち、E1抗体のみが、治療の開始時に測定したレベルに比較して急速に消失した〔治療の終了時、P=0.0058;治療後6月目及び12月目、それぞれP=0.0047及びP=0.0051〕。この消失は、1型感染又は3型感染LTRにおいて有意であった(平均P値<0.05)。これらのデータにより、E1Abレベルは回復の初期に急速に低下するという当初の知見を確認した。この特徴は、ウイルスの遺伝子型には依存しないようである。NR、PR又はRRでは、追跡期間を通して、測定したいずれの抗体においても変化が認められなかった。治療中にALTレベルが正常化し、HCV−RNAが陰性化して、治療に良好に応答した患者では、持続性応答者(LTR)と再発を有する応答者(PP)との間で著しい差があった。LTRとは異なり、RRではE1抗体レベルの低下を示さず、これは、PCR、又はHCV−RNAの古典的な検出技術によっても、ALTレベルの上昇によっても、明らかにされない潜伏性のHCV感染の存在を示していた。治療中にRR群になお存在しているこの微量のウイルスRNAは、抗E1 B細胞の刺激が可能なようであった。したがって、抗E1の監視は、NRからLTRを区別できるのみでなく、RRからも区別できる可能性がある。7.3.E1蛋白の規定された領域の抗体の監視 HCV抗原同定のための分子生物学的アプローチにより、ウイルス診断薬の開発において驚くべき進展がもたらされたが、λgt11ライブラリーの免疫スクリーニング法では、主に、コア及び非構造領域全体に分散した直鎖のエピトープが得られ、エンベロープ領域の解析のためには、哺乳動物細胞におけるE1/E2領域のクローニング及び発現を待たなければならなかった。このアプローチは、ゲノム構造の解読のかなり前から既にエンベロープ領域にそのエピトープがマッピングされていた、他の多くのウイルス感染とは著しく異なる。このようなエピトープ及び対応する抗体は、しばしば、ワクチンの開発に有用な中和活性を有し、及び/又は臨床的若しくは予知的意義のある診断用検定法の開発を可能にした(例えば、B型肝炎表面抗原に対する抗体)。今日HCVワクチン又はC型肝炎疾患の臨床診断及び予知を可能にする検査がないため、免疫監視機構に暴露されたウイルスエンベロープ領域の性状解析は、HCVの診断と予防における新しい方向付けに大きく貢献しうる。 HC−J1配列(Okamoto ら、1990)に基づき、既に記載された方法(EP-A-0 489 968)に従って、8アミノ酸ずつ重複する20量体(第3表)を幾つか合成した。env35ペプチド(E1−35とも呼ぶ)以外は、いずれによっても、約200のHCV症例の血清中の抗体を検出できなかった。2つの血清のみが、env35ペプチドとわずかに反応した。しかし、実施例6に記載の抗E1−ELISAを用いて、以下のように追加のエピトープを発見することができた:実施例6に記載の抗E1−ELISAに、50μg/mlのE1ペプチドを、試料希釈液で1/20倍希釈したヒト血清と混合することで変更を加えた。第13図に、単一の又は混合物のE1ペプチドの存在下での、組換えE1(vvHCV−40から発現された)蛋白に対するヒト血清の反応性の結果を示す。ライン免疫測定フォーマット(Line Immunoassay format)でストリップ上にコーティングされたE1ペプチドを用いることにより、血清の2%のみが検出されたが、半分以上の血清は、組換えE1蛋白で試験したとき、同じペプチドにより競合可能な抗E1抗体を含有していた。精製したE1蛋白を注射したBalb/cマウスから得たマウスモノクローナル抗体の幾つかを、次にE1に対する反応性について単一のペプチドと競合させた(第14図)。env53の添加により幾つかの血清のE1との反応性を実質的に競合させることができたため、env53の領域は明らかに優勢なエピトープを含有しており、env31領域に対する抗体も検出された。env53及びenv31ペプチドは、直接固相にコーティングしたときは全く反応性を示さなかったため、この知見は驚くべきことであった。 したがって、本出願人が既に(WO 93/18054中に)記載した方法を用いて、ペプチドを合成した。以下のペプチド:ペプチドenv35A−ビオチンNH2 −SNSSEAADMIMHTPGCV−GKビオチン(配列番号51)E1領域のHCVポリ蛋白のアミノ酸208〜227にわたるペプチドビオチン−env53(「エピトープA」)ビオチン−GG−ITGHRMAWDMMMNWSPTTAL−COOH(配列番号52)E1領域のHCVポリ蛋白のアミノ酸313〜332にわたるペプチド1bE1(「エピトープB」)H2 N−YEVRNVSGIYHVTNDCSNSSIVYEAADMIMHTPGCGK−ビオチン(配列番号53)E1領域のHCVポリ蛋白のアミノ酸192〜228にわたるを合成し、ペプチドE1a−BB(ビオチン−GG−TPTVATRDGKLPATQLRRHIDLL、配列番号54)及びE1b−BB(ビオチン−GG−TPTLAARDASVPTTTIRRHVDLL、配列番号55)〔これらは、それぞれ遺伝子型1a及び1bの配列の同一領域から得られ、また第9回国際ウイルス学会(the IXth international virology meeting)(グラスゴー、1993)で記載された(「エピトープC」 )〕の反応性と比較した。HCV血清のパネルの反応性を、エピトープA、B及びCで試験し、エピトープBは、env35Aとも比較した(47個のHCV陽性血清のうち、8個はエピトープBで陽性であったが、env35Aと反応するものはなかった)。エピトープA、B及びCに対する反応性は、実施例6に記載のようにストレプトアビジンでコーティングしたプレートに結合したビオチン化ペプチド(50μg/ml)に対して、直接、試験した。明らかに、エピトープA及びBが最も反応性が高く、エピトープC及びenv35Aは、はるかに反応性が低かった。完全なE1蛋白に対する反応性を監視したのと同じシリーズの患者(実施例7.1.)で、エピトープA、B及びCに対する反応性を試験した。エピトープCについてはほとんど反応性が見られず、一方、第15、第16、第17及び第18図に示すように、エピトープA及びBは大部分の血清と反応した。しかし、最も反応性のエピトープ(エピトープA)に対する抗体でも疾患の緩解を予測するようには見えず、一方、抗1bE1抗体(エピトープB)は、IFN治療の開始時に、ほとんど長期応答者にのみ存在した。したがって、抗1bE1(エピトープB)抗体及び抗env53(エピトープA)抗体が、C型肝炎疾患の予後の有用なマーカーであることが示された。env53エピトープは、交差反応性抗体(主要な遺伝子型と交差反応する抗体)の検出に使用することが有利であり、env53領域に対する抗体は、血清又は肝臓組織中の普遍的なE1抗原の検出に対して非常に有用である可能性がある。env53領域を認識するモノクローナル抗体を、ランダムエピトープライブラリーと反応させた。免疫スクリーニングでモノクローナル抗体5E1A10と反応した4つのクローンには、配列−GWD−が存在していた。配列AWDは、全てのHCV変異株のenv53領域に存在する普遍的なHCV配列に類似しているため、env53交差反応性のマウスのエピトープの基本的な配列を含有すると考えられる。env31も、アミノ末端配列−YQVRNSTGL−(配列番号93)中にエピトープを含有する可能性のある可変領域を明らかに含有し、診断に有用でありうる。第3表に示したenv31又はE1−31は、ペプチド1bE1の一部である。ペプチドE1−33及びE1−51もまた、マウス抗体とある程度反応し、ペプチドE1−55〔可変領域6(V6)を含有する;アミノ酸329〜336位にわたる〕もまた、患者血清のあるものと反応した。 抗E2抗体は、抗E1抗体と明らかに異なるパターンをたどり、特に治療に対する長期応答を有する患者では異なっていた。したがって、抗エンベロープ抗体の低下は、組換えE1/E2蛋白を用いる測定法では、単一の抗E1蛋白又は抗E2蛋白を用いる場合のようには効率的に測定できなかったことは明らかである。両抗体を同時に測定する測定法では、抗E2応答は明らかに抗E1応答を不明瞭にしてしまうであろう。したがって、単一のE1蛋白及びE2蛋白に対する抗エンベロープ抗体を試験する能力が有用であることが示された。7.4.抗E2抗体のマッピング 24個の抗E2MAbのうち、3個のみが組換えE2に対する反応性についてペプチドによる競合を受け得、そのうち2個は、HVRI領域(ペプチドE2−67及びE2−69、エピトープAと呼ぶ)と反応し、エピトープを認識した1個は、ペプチドE2−13B(エピトープC)による競合を受けた。大多数のマウス抗体は、コンフォメーション性抗E2エピトープを認識した(第19図)。HVRI(エピトープA)、及びHVRII(エピトープB)(これは少ない)、及び3番目の直鎖エピトープ領域(ペプチドE2−23、E2−25又はE2−27による競合を受ける、エピトープEと呼ぶ)、及び4番目の直鎖エピトープ領域(ペプチドE2−17Bによる競合を受ける、エピトープD)に対するヒトの応答も、しばしば観察できたが、大部分の血清はコンフォメーション性エピトープと反応した(第20図)。これらのコンフォメーション性エピトープは、その相対的位置により以下のように分類されうる:コンフォメーション性エピトープを認識する、ハイブリドーマ15C8C1、12D11F1、9G3E6、8G10D1H9、10D3C4、4H6B2、17F2C2、5H6A7、15B7A2の上澄液中のIgG抗体を、プロテインA親和性クロマトグラフィーにより精製し、得られたIgGを1mg/ml にし、ビオチン存在下でホウ酸緩衝液中でビオチン化した。ゲル濾過クロマトグラフィーにより、ビオチン化抗体を遊離のビオチンから分離した。プールしたビオチン化抗体画分を、100〜10,000倍希釈した。固相に結合したE2蛋白を、非ビオチン化競合抗体の100倍量の存在下でビオチン化IgGにより検出し、次にアルカリホスファターゼ標識ストレプトアビジンにより検出した。 競合の百分率を第6表に示す。これらの結果に基づき、4つのコンフォメーション性抗E2エピトープ領域(エピトープF、G、H及びI)を表すことができた(第38図)。あるいは、これらのMAbは、本試験で使用したペプチドでは表されない突然変異直鎖エピトープを認識する可能性がある。モノクローナル抗体4H6B2及び10D3C4は、16A6E7の反応性と競合したが、16A6E7とは異なり、ペプチドE2−13Bを認識しなかった。これらのMAbは、同じ直鎖エピトープ(エピトープC)の変異株を認識するか、あるいは立体障害があるか又はE2−13B領域(エピトープH)への16A6E7の結合後コンフォメーションを変化させるコンフォメーション性エピトープを認識する可能性がある。実施例8:E1グリコシル化突然変異体8.1.緒言 哺乳動物細胞から発現される、vvHCV10AにコードされるE1蛋白及びvvHCV41〜44にコードされるE2蛋白は、それぞれ6個及び11個の炭水化物部分を含有する。これは、vvHCV10A感染又はvvHCV44感染RK13細胞の溶解物を、溶解物中の蛋白(E1を含む)が部分的に脱グリコシル化されるように、低下する濃度のグリコシダーゼ〔PNGaseF又はエンドグリコシダーゼH、(ベーリンガー・マンハイム・ビオケミカ(Boehringer Mannhein Biochemica)、製造業者の取り扱い説明書による〕とインキュベートすることにより、示すことができた(それぞれ第39及び第40図)。 幾つかのグリコシル化部位の欠如した突然変異体は、免疫学的反応性が改良されたエンベロープ蛋白の選択を可能にした。例えばHIVについては、幾つかの選択された糖付加モチーフが欠如したgp120蛋白が、診断的目的及びワクチンとしての目的に特に有用であることが見いだされた。A/ホンコン/3/68(H3N2)インフルエンザウイルスのエスケープ突然変異体の血球凝集素蛋白中の新しいオリゴ糖側鎖の付加は、中和モノクローナル抗体との反応性を妨害する(Skehelら、1984)。インフルエンザ血球凝集素蛋白中に、部位特異的突然変異誘発により新規なグリコシル化部位を導入すると、劇的な抗原性変化が観察され、炭水化物が抗原性の調節物質であることが示唆された(Gallagher ら、1988)。別の分析では、フレンドマウス白血病ウイルスの表面蛋白gp70の8個の炭水化物付加モチーフを欠失させた。この突然変異のうち7つはウイルス感染性に影響を与えなかったが、アミノ末端に関して4番目のグリコシル化シグナルの突然変異により、非感染性表現型が得られた(Kaymanら、1991)。更に、N−結合炭水化物鎖の付加は、折りたたみ中間体の安定化、したがって効率的折りたたみ、正しくない折りたたみ及び小胞体での分解の防止、オリゴマー化、生物学的活性、及び糖蛋白の輸送に重要であることが、当該分野で公知である(Roseら、1988;Domsら、1993;Helenius、1994の総説を参照)。 HCV遺伝子型の、異なるエンベロープ蛋白配列の整列から、HCVサブタイプ1bE1蛋白上の6個のグリコシル化部位は、ある(サブ)タイプでは幾つかは欠如しているため、正しい折りたたみと反応性のために必ずしも全てが必要ではない、と推測されうる。1b、6a、7、8及び9型に存在する4番目の炭水化物モチーフ(Asn251上)は、今日知られている他の全ての型では欠如している。この糖付加モチーフは、突然変異させて、反応性が改善された1bE1型蛋白を生成しうる。また、2b型配列は、V5領域(Asn299上)に余分のグリコシル化部位を示す。遺伝子型2cに属する単離株S83は、V1領域(Asn上)の最初の炭水化物モチーフさえ欠如しているが、これは他の全ての単離株には存在している(Stuyver 、1994)。しかし、完全に保存された糖付加モチーフの中でも、炭水化物の存在は、折りたたみには必要でない可能性もあり、免疫監視機構を逃れるのに一役買っている可能性がある。したがって、正しい折りたたみ(及び反応性)に必要とされない炭水化物付加モチーフの同定は明白ではなく、各突然変異体を分析し、反応性について試験しなければならない。グリコシル化モチーフ(NXS又はNXT配列)の突然変異誘発は、これらのコドンが、Nの場合はNと異なるアミノ酸をコードし、及び/又はSの場合及びTの場合はS又はTと異なるアミノ酸をコードするように、N、S、又はTのコドンを突然変異させることにより達成されうる。あるいは、NPS又はNPTが炭水化物によって度々修飾されるわけではないことが知られているため、X位をPに突然変異させてもよい。どの炭水化物付加モチーフが折りたたみ及び/又は反応性に必要で、どれが必要でないかを確立した後、そのような突然変異の組合せを作成してもよい。8.2.E1蛋白の突然変異誘発 全ての突然変異はクローンHCCl10A(配列番号5)のE1配列上に行なった。第1回目のPCRを、ワクシニア11K後期プロモーターの上流に位置するGPT配列をターゲットとしたセンスプライマー「GPT」(第7表を参照)と、突然変異誘発を得るために目的の塩基変化を含有するアンチセンスプライマー(GLY#と命名、#はグリコシル化部位の数を示す。第41図を参照)とを使用して行なった。6つのGLY#プライマー(それぞれ特定のグリコシル化部位に対して特異的)を以下のように設計した:− N−グリコシル化Asnをコードするコドン(AAC又はAAT)を、Glnコドン(CAA又はCAG)に変更。アスパラギンに非常に似ていることからグルタミンを選択した〔2つのアミノ酸は共に中性であり、非極性残基を含有する。グルタミンの側鎖の方が長い(−CH2 −基が1つ余分にある)〕。− 新しいユニーク(単一)又は稀な制限酵素部位(例えば、E1Gly5の第2のSmaI部位)を作成するために、グリコシル化部位の下流のコドンの1つ又は幾つかに、サイレント変異を導入。アミノ酸配列を変更することなく、この突然変異は、突然変異配列を元々のE1配列(pvHCV−10A)から又は互いに区別する方法を与える(第41図)。この追加の制限部位は、新しいハイブリッド(2重、3重、など)グリコシル化突然変異体の構築にも有用でありうる。− 最初のミスマッチのヌクレオチドの5’に18ヌクレオチドを、そして3’末端に12〜16ヌクレオチドを伸長させる。第7表に、N−結合グリコシル化部位の配列と重複する6つのGLY#プライマーの配列を示す。 部位特異的突然変異誘発のために「ミスプライミング(mispriming)」又は「重複伸長(overlap extension )」(Horton、1993)を使用した。この考え方を、第42と第43図に例示する。まず、2つの別個の断片を、各突然変異部位について標的遺伝子から増幅した。5’末端から得られたPCR生成物(生成物GLY#)を、5’センスGPTプライマー(第7表を参照)、及び各3’アンチセンスGLY#プライマーで増幅した。第2の断片(生成物OVR#)を、3’アンチセンスTKR プライマーと、各5’センスプライマー(OVR#プライマー、第7表、第43図を参照)で増幅した。 OVR#プライマーは、GLY#プライマー配列の一部を標的とする。したがって、2群のPCR生成物は、同一配列の重複領域を共有する。これらの中間体生成物を混合し(GLY−1とOVR−1、GLY−2とOVR−2など)、高温で融解させ、再アニーリングさせると、生成物GLY#の最初のセンス鎖は、生成物OVR#のアンチセンス鎖と、2つの鎖が互いのプライマーとして作用するようにアニーリングすることができる(この逆もある)(第42.B.図を参照)。アニーリングした重複部分を2回のPCRサイクル中、Taqポリメラーゼで伸長すると、全長突然変異体分子E1GLY#が生成し、これはグリコシル化部位数#を破壊する突然変異を有していた。2つの内部ネストプライマー(nested primer)の共通のセットを用いて、3回目のPCRで、クローニングのための充分量のE1GLY#生成物を生成した。これら2つの新規なプライマーは、それぞれワクシニア11Kプロモーターの3’部位(センスGPT−2プライマー)と、ワクシニアのチミジンキナーゼ遺伝子座の5’末端(アンチセンスTKR −2プライマー、第7表を参照)が重複していた。全てのPCR条件は、Stuyver ら(1993)が記載したとおりに行った。 これらの各PCR生成物を、EcoRI/BamHIで切断して、元々のE1配列(pvHCV−10A)を含有するEcoRI/BamHIで切断したワクシニアウイルスにクローン化した。 選択されたクローンを、EcoRI/BamHI切断により挿入体の長さについて、及び新しい各制限部位の存在について分析した。突然変異した部位を重複している配列を、2本鎖配列決定により確認した。8.3.E1グリコシル化突然変異体の解析 実施例8.2に記載の突然変異E1配列を含有する6つのプラスミドから出発して、実施例2.5に記載の野性型ワクシニアウイルスとの組換えを行って、組換えワクシニアウイルスを作成した。簡単に説明すると、サブコンフルエントなRK13細胞の175cm2 フラスコを、突然変異E1配列を有する6つの組換えワクシニアウイルスで、及びvvHCV−10A(非突然変異E1配列を有する)と野性型ワクシニアウイルスとで、感染させた。感染の24時間後、細胞を溶解して、実施例4に記載のウェスタンブロッティングで分析した(第44A図を参照)。全ての突然変異体は、SDS−PAGEで、元々のE1蛋白より速い移動度を示し(約2〜3kDa 小さい分子量に相当する)、これにより炭水化物部分が1つ付加されなかったことを確認した。また、組換えウイルスをPCRと制限酵素分析で解析して、異なる突然変異体の同一性を確認した。第44B図に、全ての突然変異体(第41図に記載)が予測された追加の制限部位を含有することを示す。細胞溶解物の別の部分を、ELISAにより異なる突然変異体の反応性を試験するために使用した。溶解物を20倍希釈し、実施例6に記載のようにレクチンGNAでコーティングしたマイクロウェルプレートに添加した。捕捉された(突然変異)E1糖蛋白を、実施例6に記載の24名のHCV感染患者の20倍希釈血清と反応させた。6つの突然変異体及びE1のシグナル対ノイズ(S/N)値(GLY#のOD/野性型のOD)を、第8表に示す。この表にはまた、GLY#及びE1蛋白のS/N値の比を示す。患者血清との反応性の比較のために異なる突然変異体の細胞溶解物を使用するアプローチにより、反応性レベルではなく異なる発現レベルの結果が観察される可能性があることを理解すべきである。このような困難さは、実施例5に記載のように異なる突然変異体を精製し、全ての異なるE1蛋白の同一量を試験することにより解決できた。しかし、第5表に示した結果は、第1(GLY1)、第3(GLY3)、及び第6(GLY6)のグリコシル化モチーフの除去により、幾つかの血清の反応性が低下するが、第2と第5の部位の除去ではそうではないことを、既に示している。GLY4の除去は、幾つかの血清の反応性を改良するようであった。これらのデータは、異なる患者は、本発明のグリコシル化突然変異体に対して異なって反応することを示す。すなわち、このような突然変異体E1蛋白は、HCV疾患の診断(スクリーニング、確認、予知など)と予防に有用でありうる。実施例9:グリコシル化欠損酵母中でのHCVのE2蛋白の発現 クローンHCCL41に対応するE2配列に、α−接合因子プレ/プロシグナル配列を付加し、酵母発現ベクターに挿入した。この構築物で形質転換したS・セレビシエ(S. cerevisiae)細胞は、増殖培地中にE2蛋白を分泌した。S. cerevisiae 株中でのこのような構築物の発現の際に、ほとんどのグリコシル化部位は、高マンノース型グリコシル化で修飾されていたことが観察された(第45図)。このため、不均一性のレベルが高くなりすぎ、反応性が妨害され、このことはワクチンにも診断目的にも不適であった。この問題を解決するために、バナジン酸耐性クローンの選択により、改変されたグリコシル化経路を有する S. cerevisiae突然変異体を作成した。このクローンを、分子量の分析及び糖蛋白インベルターゼの不均一性の分析により、改変グリコシル化経路について解析した。これにより、異なるグリコシル化欠損 S. cerevisiae突然変異体が同定できた。次に、選択された突然変異体の幾つかでE2蛋白を発現させ、実施例4に記載のウェスタンブロッティング上で、実施例7に記載のモノクローナル抗体と反応させた(第46図)。実施例10.一般的有用性 これら結果は、HCVエンベロープ蛋白とヒト患者血清との高い反応性を得るには、良好な発現系のみならず良好な精製プロトコールが必要であることを示している。これは、蛋白の本来の折りたたみの保存を保証する本発明の適正なHCVエンベロープ蛋白発現系及び/又は精製プロトコールを用い、夾雑蛋白の排除を保証し、コンフォメーション(したがって、HCVエンベロープ蛋白の反応性)を保持する本発明の精製プロトコールを用いることにより達成される。診断的スクリーニング測定法に必要な精製HCVエンベロープ蛋白の量は、1年間に数グラムの範囲である。ワクチンとして使用するには、更に多量のエンベロープ蛋白が必要であろう。したがって、最適の発現構築物の選択及び小規模のスケールアップにはワクシニアウイルス系が使用でき、数種の酵母株から発現させる場合、高マンノース炭水化物を含有する単一の又は特定オリゴマーのエンベロープ蛋白の大規模発現と精製が達成されうる。例えば、B型肝炎の場合は、哺乳動物細胞からのHBsAgの製造は、酵母由来のB型肝炎ワクチンと比較してはるかに費用がかさむ。 本発明に開示した精製方法は、「ウイルスエンベロープ蛋白」一般にも使用できる。例としては、フラビウイルス、新たに発見されたGB−A、GB−B及びGB−C肝炎ウイルス、ペスチウイルス〔例えばウシウイルス性下痢ウイルス(BVDV)、ブタコレラウイルス(HCV)、ボーダー病ウイルス(Border Disease Virus)(BDV)〕、そしてこれらより少し関連は少ないがB型肝炎ウイルスのようなウイルス(主にHBsAgの精製)から得られるものがある。 本発明のエンベロープ蛋白精製方法は、詳細な説明の項に記載したように、下等又は高等真核生物細胞あるいは原核生物で、細胞内及び細胞外に発現される蛋白について使用することができる。プラスミドpgptATA18の制限地図。プラスミドpgsATA18の制限地図。プラスミドpMS66の制限地図。プラスミドpvHCV−11Aの制限地図。IFN治療に対する無応答者の抗E1レベル。IFN治療に対する応答者の抗E1レベル。IFN治療に完全に応答した患者の抗E1レベル。IFN治療に対する不完全応答者の抗E1レベル。IFN治療に対する無応答者の抗E2レベル。IFN治療に対する応答者の抗E2レベル。IFN治療に対する不完全応答者の抗E2レベル。IFN治療に対する完全応答者の抗E2レベル。ペプチドと競合したヒト抗E1反応性。抗E1モノクローナル抗体の、ペプチドとの反応性の競合。IFN治療に対する無応答者の抗E1(エピトープ1)レベル。IFN治療に対する応答者の抗E1(エピトープ1)レベル。IFN治療に対する無応答者の抗E1(エピトープ2)レベル。IFN治療に対する応答者の抗E1(エピトープ2)レベル。抗E2モノクローナル抗体の、ペプチドとの反応性の競合。ペプチドと競合したヒト抗E2反応性。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。本発明の核酸配列。本発明のE1又はE2蛋白をコードする核酸配列は、配列表に示すように、各E1又はE2蛋白のアミノ酸配列に翻訳されうる(配列番号3〜13、21〜31、35及び41〜49は、残基番号1から開始する読み枠で翻訳され、配列番号37〜39は、残基番号2から開始する読み枠で翻訳される)。vvHCV39(1b型)、vvHCV40(1b型)、vvHCV62(3a型)、及びvvHCV63(5a型)に感染した細胞溶解物の4つの異なるE1精製物の、レンチルレクチンクロマトグラフィー溶出画分から得られたELISA結果。第22図に示した値に基づく、4つの異なるE1構築物の、レンチルレクチンクロマトグラフィーから得られた溶出プロフィール。第 vvHCV39(1b型)、vvHCV40(1b型)、vvHCV62(3a型)、及びvvHCV63(5a型)に感染した細胞溶解物の4つの異なるE1精製物の、ゲル濾過クロマトグラフィー後に得られた画分のELISA結果。1b型(1)、3a型(2)及び5a(3)型(それぞれvvHCV39、vvHCV62及びvvHCV63に感染したRK13細胞からのもの;レンチルレクチンで精製し、実施例5.2〜5.3のように還元した)のE1蛋白の精製物、及び標準物質(4)から得られたプロフィール。「1」、「2」、「3」と記したピークは、純粋なE1蛋白ピークを示す(第24図を参照、主に画分26〜30にE1反応性)。E1vvHCV40(1b型)(レーン1)、第25図に示す画分10〜17を示すvvHCV40のゲル濾過のプール1(レーン2)、第25図に示す画分18〜25を示すvvHCV40のゲル濾過のプール2(レーン3)及びE1プール(画分26〜30)(レーン4)の未処理溶解物の、実施例4に記載したSDS−PAGEの銀染色。E1構築物39(1b型)及び62(3a型)のゲル濾過の画分のストレプトアビジン−アルカリホスファターゼブロット。蛋白はNEM−ビオチンで標識した。レーン1:開始ゲル濾過構築物39、レーン2:画分26構築物39、レーン3:画分27構築物39、レーン4:画分28構築物39、レーン5:画分29構築物39、レーン6:画分30構築物39、レーン7:画分31構築物39、レーン8:分子量マーカー、レーン9:開始ゲル濾過構築物62、レーン10:画分26構築物62、レーン11:画分27構築物62、レーン12:画分28構築物62、レーン13:画分29構築物62、レーン14:画分30構築物62、レーン15:画分31構築物62。第26図と同一条件下で実施したvvHCV−39(E1s、1b型)及びvvHCV−62(E1s、3a型)のゲル濾過画分のSDS−PAGEゲルの銀染色。レーン1:開始ゲル濾過構築物39、レーン2:画分26構築物39、レーン3:画分27構築物39、レーン4:画分28構築物39、レーン5:画分29構築物39、レーン6:画分30構築物39、レーン7:画分31構築物39、レーン8:分子量マーカー、レーン9:開始ゲル濾過構築物62、レーン10:画分26構築物62、レーン11:画分27構築物62、レーン12:画分28構築物62、レーン13:画分29構築物62、レーン14:画分30構築物62、レーン15:画分31構築物62。精製操作の完全な概要を与える、抗E1マウスモノクローナル抗体5E1A10によるウェスタンブロット解析。レーン1:粗溶解物、レーン2:レンチルクロマトグラフィーのフロースルー(flow through)、レーン3:レンチルクロマトグラフィー後のエンピゲンBBによる洗浄物、レーン4:レンチルクロマトグラフィーの溶出物、レーン5:レンチル溶出物の濃縮中のフロースルー(flow through)、レーン6:サイズ排除クロマトグラフィー(ゲル濾過)後のE1のプール。vvHCV44に感染したRK13細胞からのE2蛋白のレンチルレクチンクロマトグラフィーのOD280 プロフィール(連続の線)。点線は、ELISAで検出したE2反応性を示す(実施例6のように)。vvHCV44に感染したRK13細胞からのE2蛋白プールのレンチルレクチンゲル濾過クロマトグラフィーのOD280 プロフィール(連続の線)。E2プールは、直ちにゲル濾過カラムに適用した(非還元条件)。点線は、ELISAで検出したE2反応性を示す(実施例6のように)。vvHCV44に感染したRK13細胞からのE2蛋白プールのレンチルレクチンゲル濾過クロマトグラフィーのOD280 プロフィール(連続の線)。E2プールは、実施例5.3に示すように還元し、保護した(還元条件)。点線は、ELISAで検出したE2反応性を示す(実施例6のように)。第31B図に示す還元条件下でゲル濾過後の、vvHCV44から発現されたE2蛋白のNi2+−IMACクロマトグラフィー及びELISA反応性。第32図に示すNi2+−IMACクロマトグラフィーの、200mMイミダゾール溶出工程(レーン2)と30mMイミダゾール洗浄(レーン1)により回収された、精製されたE2蛋白0.5μg のSDS−PAGEの銀染色。イミダゾールを除去することを目的とした、第33図に示す200mMイミダゾールにより回収した精製E2蛋白の脱塩工程のODプロフィール。治療中及び治療後6〜12カ月間にわたり追跡した、LIAスキャン(LIA scan)法で測定した、NRとLTRの異なるHCV抗原(コア1、コア2、E2HCVR、NS3)に対する抗体レベル。平均値は、白四角の曲線で示してある。治療中及び治療後6〜12カ月間にわたり追跡した、LIAスキャン(LIA scan)法で測定した、NRとLTRの異なるHCV抗原(NS4、NS5、E1及びE2)に対する抗体レベル。平均値は、白四角の曲線で示してある。LTR群及びNR群の平均E1抗体(E1Ab)及びE2抗体(E2Ab)レベル。無応答者(NR)及び長期応答者(LTR)の1b型及び3a型の平均E1抗体(E1Ab)レベル。抗E2モノクローナル抗体の地図上の相対的位置。HCVのE1エンベロープ蛋白の部分的グリコシル化。製造業者の指示に従い、vvHCV10A感染RK13細胞の溶解物を、異なる濃度のグリコシダーゼとインキュベートした。右のパネル:グリコペプチダーゼF(PNGase F)。左のパネル:エンドグリコシダーゼH(Endo H)。HCVのE2エンベロープ蛋白の部分的グリコシル化。製造業者の指示に従い、vvHCV64感染(E2)及びvvHCV41感染(E2s)RK13細胞の溶解物を、異なる濃度のグリコペプチダーゼF(PNGase F)とインキュベートした。HCVのE1糖蛋白のインビトロ突然変異誘発。突然変異した配列の地図と、新しい制限部位の作成。HCVのE1糖蛋白のインビトロ突然変異誘発(第1部)。PCR増幅の第1段階。HCVのE1糖蛋白のインビトロ突然変異誘発(第2部)。重複伸長とネストPCR(nested PCR)。HCVのE1糖蛋白のインビトロ突然変異誘発。増幅の第1段階で合成されたPCRで突然変異させた断片(GLY−#及びOVR−#)の地図。HeLa細胞(左)及びRK13細胞(右)中で発現されたE1糖蛋白突然変異体のウェスタンブロット解析。レーン1:野性型VV(ワクシニアウイルス)、レーン2:元々のE1蛋白(vvHCV−10A)、レーン3:E1突然変異体Gly−1(vvHCV−81)、レーン4:E1突然変異体Gly−2(vvHCV−82)、レーン5:E1突然変異体Gly−3(vvHCV−83)、レーン6:E1突然変異体Gly−4(vvHCV−84)、レーン7:E1突然変異体Gly−5(vvHCV−85)、レーン8:E1突然変異体Gly−6(vvHCV−86)。PCR増幅/制限切断によるE1グリコシル化突然変異体ワクシニアウイルスの分析。レーン1:E1(vvHCV−10A)、BspEI、レーン2:E1.Gly−1(vvHCV−81)、BspEI、レーン4:E1(vvHCV−10A)、SacI、レーン5:E1.Gly−2(vvHCV−82)、SacI、レーン7:E1(vvHCV−10A)、SacI、レーン8:E1.Gly−3(vvHCV−83)、SacI、レーン10:E1(vvHCV−10A)、StuI、レーン11:E1.Gly−4(vvHCV−84)、StuI、レーン13:E1(vvHCV−10A)、SmaI、レーン14:E1.Gly−5(vvHCV−85)、SmaI、レーン16:E1(vvHCV−10A)、StuI、レーン17:E1.Gly−6(vvHCV−86)、StuI、レーン3−6−9−12−15:低分子量マーカー、pBluescript SK+、MspI。S・セレビシエ(S. cerevisiae)で発現させた組換えE2のSDSポリアクリルアミドゲル電気泳動。接種物は、ロイシン選択培地中で72時間増殖させ、完全培地で1/15希釈した。28℃で10日間培養後、培地試料を採取した。スピードバック(speedvac)で濃縮した培養上澄液200μl の相当量をゲルにのせた。2つの独立の形質転換体を分析した。グリコシル化欠損S・セレビシエ(S. cerevisiae)突然変異体で発現させた組換えE2のSDS−ポリアクリルアミドゲル電気泳動。接種物は、ロイシン選択培地中で72時間増殖させ、完全培地で1/15希釈した。28℃で10日間培養後、培地試料を採取した。イオン交換クロマトグラフィーで濃縮した培養上澄液の350μl の相当量をゲルにのせた。 E1及び/又はE2及び/又はE1/E2よりなる群から選択される組換えHCVのエンベロープタンパク質を精製する方法であって、(i) 組換えにより発現したタンパク質にジスルフィド結合切断剤を用いて、ジスルフィド結合切断又は還元工程を行い、そして(ii) ジスルフィド結合の再形成の阻止をSH基保護剤又は結合剤によるか、あるいはpH6未満で達成することを特長とする方法。 ジスルフィド結合切断剤が、0.1〜50mMの範囲の濃度の、ジチオスレイトール(DTT)である、請求の範囲第1項記載の方法。 ジスルフィド結合切断剤が、0.1〜20mMの範囲の濃度の、ジチオスレイトール(DTT)である、請求の範囲第1項記載の方法。 ジスルフィド結合切断剤が、0.5〜10mMの範囲の濃度の、ジチオスレイトール(DTT)である、請求の範囲第1項記載の方法。 ジスルフィド結合切断剤が、界面活性剤を伴う、請求の範囲第1項記載の方法。 界面活性剤が、1〜10%の濃度の、エンピゲン−BB(Empigen-BB(登録商標))である、請求の範囲第5項記載の方法。 界面活性剤が、3.5%の濃度の、エンピゲン−BB(Empigen-BB(登録商標))である、請求の範囲第5項記載の方法。 SH基保護剤が、N−エチルマレイミド(NEM)又は検出のための標識基、及び/又は該組換えタンパク質を固体基材に固定化することを助ける基により修飾したN−エチルマレイミドである、請求の範囲第1項〜第7項のいずれか1項記載の方法。 少なくとも以下の工程:− 組換えE1及び/又はE2及び/又はE1/E2発現宿主細胞を溶解し、− 親和性精製、あるいは抗E1及び/又は抗E2特異的モノクローナル抗体を用いる免疫親和性により、上記HCVエンベロープタンパク質を回収し、− ジスルフィド結合切断剤を用いて、及び/又はSH基保護剤の存在下で、ジスルフィド結合を還元又は切断して、そして− 還元されたE1及び/又はE2及び/又はE1/E2エンベロープタンパク質を、ゲル濾過により回収する工程、により更に特徴づけられる、請求の範囲第1項〜第8項のいずれか1項記載の方法。 細胞溶解する工程を、SH基保護剤の存在下で実施する、請求の範囲第9項記載の方法。 親和性精製が、レクチンクロマトグラフィー又はレンチルレクチンクロマトグラフィーからなる、請求の範囲第9項記載の方法。 タンパク質をゲル濾過により回収する工程が、さらにNi−IMACクロマトグラフィー及び脱塩工程を続ける、請求の範囲第9項記載の方法。 凝集物がないことを特徴とし、少なくとも80%純度である、請求の範囲第1項〜第12項のいずれか1項記載の方法により得られる単離されたHCVエンベロープタンパク質。 凝集物がないことを特徴とし、少なくとも90%純度である、請求の範囲第1項〜第12項のいずれか1項記載の方法により得られる単離されたHCVエンベロープタンパク質。 凝集物がないことを特徴とし、少なくとも95%純度である、請求の範囲第1項〜第12項のいずれか1項記載の方法により得られる単離されたHCVエンベロープタンパク質。 更に、組換えHCVエンベロープタンパク質が、ワクシニアウイルスに基づく系を使用し、組換え哺乳動物細胞から発現されることを特徴とする、請求の範囲第13項〜第15項のいずれか1項記載の単離されたHCVエンベロープタンパク質。 更に、組換えHCVエンベロープタンパク質が、組換え酵母細胞から発現されることを特徴とする、請求の範囲第13項〜第15項のいずれか1項記載の単離されたHCVエンベロープタンパク質。配列表


ページのトップへ戻る

生命科学データベース横断検索へ戻る