タイトル: | 特許公報(B2)_テラヘルツ波光学系 |
出願番号: | 2003107885 |
年次: | 2008 |
IPC分類: | G02B 1/04,G01N 21/35,G02B 5/08,G02B 5/30,H01S 1/02 |
南出 泰亜 伊藤 弘昌 工藤 朗人 JP 4183546 特許公報(B2) 20080912 2003107885 20030411 テラヘルツ波光学系 独立行政法人理化学研究所 503359821 有限会社パックス 303008297 堀田 実 100097515 南出 泰亜 伊藤 弘昌 工藤 朗人 20081119 G02B 1/04 20060101AFI20081030BHJP G01N 21/35 20060101ALI20081030BHJP G02B 5/08 20060101ALI20081030BHJP G02B 5/30 20060101ALI20081030BHJP H01S 1/02 20060101ALI20081030BHJP JPG02B1/04G01N21/35 ZG02B5/08 AG02B5/30H01S1/02 G02B 1/04 G01N 21/35 特開平10−316829(JP,A) 2 2004317573 20041111 9 20060214 井上 信 【0001】【発明の属する技術分野】 本発明は、たとえば、テラヘルツ光をより容易により有効に活用可能とするテラヘルツ波光学系に関する。【0002】【発明の背景】【特許文献1】 特開2002−303574号公報【特許文献2】 特開2002−246664号公報【特許文献3】 特開2002−223017号公報 従来、テラヘルツ帯電磁波は、通常状態において不可視光である。この様なテラヘルツ帯光は、波長3mm〜30μm、周波数100GHz〜10THzのゾーンに存在する電磁波であり、物質の測定、検査、イメージ化及びその他の種々の分野において利用されている。【0003】 上述の通り、テラヘルツ光は人間の目で直接的に見ることはできない。図5は、超長波(VLF)からγ線に至る波長の周波数分布を示している。この周波数帯域において、目に見える光(可視光線)は、赤外線と紫外線とに挟まれた極狭い周波数帯域の波長光であることが知れる。【0004】 図5からテラヘルツ電磁波は、ミリ波(EHF)から遠赤外線とに挟まれた波長領域にあり、不可視光線であることが知れる。このテラヘルツ電磁波は、特に近年、実用化が進んでおり、テラヘルツ光の光軸を観察し調整し得る簡単な観察ツールの出現が要望されている。これらの要望に基き、観察ツールとして以下の技術が提案されている。 特許文献1において、テラヘルツ光学系のアライメントの調整は、ダイポールアンテナ等のテラヘルツ光源をピンホール等に置き換え、ピンホールに可視光又は近赤外光(多くの場合、ポンプ光そのもの)を通し、その透過光の様子を観察しながら行われている。即ち、ピンホールの透過光の光路がテラヘルツ光の光路と同一であると見なすことにより行われている。【0005】 なお、可視光の場合は、その照射位置等を肉眼で直接的に観察することが可能である。近赤外光等の場合は、近赤外光に感応して可視光を発光する材料をシート部材に塗布したカード式赤外センサ(例えば、シグマ光機株式会社から市販されている「SIRC−(1)」(商品名))等の簡便な観察ツールを用いることにより、容易に観察することができる。【0006】 特許文献2の技術は、テラヘルツ信号系と固有ジョセフソン接合位置とを確実に結合させることができる単結晶固有ジョセフソン接合テラヘルツ検出器である。その構成は、単結晶固有ジョセフソン接合テラヘルツ検出器であって、基板とこの基板上に搭載される両面加工プロセスで作製された全超伝導Bi2Sr2CaCu2O8単結晶固有のジョセフソン接合装置と、このジョセフソン接合装置に集積化されるアンテナを具備するものである。【0007】 特許文献3には、テラヘルツ光素子と、該テラヘルツ光素子の所定個所に基材と反対側からフェムト秒パルス光を照射する照射部と、2つの導電膜間に流れる電流を検出する電流検出部とを備えたテラヘルツ光検出装置が開示されている。【0008】 テラヘルツ光素子は、基材と、この基材の平面上に形成された光伝導膜と、光伝導膜上に形成された互いに分離された2つの導電膜とを備える。導電膜の一部同士が、基材の平面に沿った方向に所定間隔dを開けるように配置される。基材は、基材から光伝導膜と反対側へ出射するか、あるいは基材に光伝導膜と反対側から入射するテラヘルツ光に対してレンズ作用を為すように形成される。【0009】【発明が解決しようとする課題】 しかしながら、テラヘルツ帯の電磁波は、可視光領域の光線と比較して減衰率が高い。本特性は、図4からも知れる。図4において、グラフ(b)は、従来の板厚2mmのポリエチレンへテラヘルツ帯の電磁波を透過させた場合の波長(THz)に対する減衰率特性を示している。本グラフ(b)から、周波数が高くなるに従い急峻に透過特性が低下することが知れる。また、テラヘルツ帯は、不可視光であり、その取り扱いが可視光と比較して困難である問題点を有する。【0010】 また、開示された上記従来技術において、特許文献1では、テラヘルツ光源をピンホールと同じ位置に正確に置き換えることは非常に困難である。このため、ピンホールの透過光を基準にしてテラヘルツ光学系のアライメントを調整した後に、ピンホールをテラヘルツ光源に置き換えるだけでは、そのアライメントを正確に調整することはできない。【0011】 そのため本テラヘルツ光学系のアライメントを調整する従来の調整方法では、実際には、ピンホールの光源に置き換えた後にテラヘルツ光の検出信号の強度を測定しつつその強度が高まるように、テラヘルツ光学系のアライメントを再調整して最適化している。 この最適化の作業には、テラヘルツ光の検出信号の強度を頼りにテラヘルツ光学系のアライメントを少しずつ変えていく、試行錯誤の繰り返しが不可欠である。よって、本従来の調整方法では、テラヘルツ光学系のアライメントを正確に行うためには、前述した試行錯誤の繰り返しが必要である。このため、著しく手数を要する問題点を伴う。【0012】 特許文献2の技術においては、超伝導材料を用いる必要があり、コストが高く、また、製造が困難である問題点を有する。【0013】 特許文献3の技術は、その製造が複雑である問題点を有する。【0014】 また、一般的にテラヘルツ波の確認には、液体ヘリウムを用いたボロメータが知られている。しかし、この技術は、大掛かりな測定系が必要になる問題点を有する。【0015】 本発明は、コストが低く、また、製造が簡単なテラヘルツ波光学系を提供することを目的とする。【0016】【課題を解決するための手段】 本発明のテラヘルツ光学系は、テラヘルツ波発生源と、該テラヘルツ発生源から発生したテラヘルツ波の光軸上に配置されたシクロオレフィンの重合体のゼオネックス(登録商標)からなる光学部品と、可視光源とを備え、該可視光源からの可視光が前記テラヘルツ波の光軸上に乗るようにしたことを特徴とする。【0017】 本発明の好ましい実施形態によれば、前記テラヘルツ波の周波数は100GHz〜10THzである。【0018】【作用】 以下に本発明の作用を本発明をなすに際して得た知見とともに説明する。 従来、シクロオレフィンは光学系部品の材料として用いられていた。しかるに、本発明者は、シクロオレフィンからなる光学部品の特性をより詳細に調べたところ、該部品は、テラヘルツ波に対して優れた透過特性を有していることを見出した。 のみならず、該部品は可視光に対しても優れた透過性を有していることをも見出した。さらに、可視光に対するとテラヘルツ光とに対する屈折率の差が0.01以下であるという事項をも見出した。そのため、両者の波長が非常に離れているにもかかわらず、屈折率の差が非常に小さいのでレンズなどの光学部品を通した場合でも同じ場所で集光されるため可視光をパイロット光として使用することができる。結局、例えば、テラヘルツ波の光軸と可視光の光軸とを絶えず一致させてやれば可視光を見ることによりテラヘルツ波の光軸を知ることが可能となる。【0019】 本発明は上記のようにシクロオレフィンからなる光学部品の新たな特性を発見することによりその用途の拡大を図ったものである。 ここで、シクロオレフィンとしては、高分子体が好適に用いられる。重合体(シクロオレフィンポリマー)あるいは共重合体(シクロオレフィンコポリマー)が好適に用いられる。シクロオレフィンポリマーは商品名ゼオネックス(登録商標)、シクロオレフィンコポリマーは商品名アペル(三井化学株式会社製)として入手可能である。【0020】【発明の実施の形態】次に、添付図面を参照して本発明によるテラヘルツ波光学系の実施の形態を詳細に説明する。図1から図4を参照すると、本発明に関連するテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法の一実施形態が示されている。 図1から図3は、テラヘルツ波の同軸にパイロットビーム(可視光)を重ねる処理手順例を示している。実施形態の処理手順は、図1〜図3に示すステップ1〜ステップ3の対応処理を基に構成される。本アライメント手順例を以下に示す。【0021】(ステップ1) 図1は、ステップ1が適用されるテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法の構成例を示すシステム図である。本図1において、ステップ1が適用されるテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法は、パラメトリック発振器型のテラヘルツ波発生装置10、アパーチャー1、シクロオレフィン板4、Siボロメーター(検出器)5を有して構成される。テラヘルツ波発生装置10からは、テラヘルツ波11が出力される。この出力されるテラヘルツ波11の光軸にアパーチャー1の透過光軸を設定する。シクロオレフィン板4を、板前後においてテラヘルツ波11を透過状態に設定する。さらに、Siボロメーター5の位置と方向を、テラヘルツ波の光軸に対し垂直方向に合わせる。【0022】(ステップ2) 図2は、テラヘルツ波の同軸にパイロットビーム(可視光)12を重ねる第2の処理手順例を示した図であり、ステップ2が適用されるテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法の構成例を示すシステム図である。本図2では、図1の示すステップ1が適用されるテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法に加え、さらに、アパーチャー2とアパーチャー3とが追加される。本ステップ2では、シクロオレフィン板4とSiボロメーター5との間に、新たに、アパーチャー2とアパーチャー3とを追加設定する。この追加設定において、Siボロメーター5のテラヘルツ波信号の検出測定値が下がらない位置に、アパーチャー2とアパーチャー3を設定する。本設定では、追加されるアパーチャー2とアパーチャー3の透過孔の光軸を、テラヘルツ波11の光軸に一致させることが要件とされる。【0023】(ステップ3) 図3は、第3の処理手順例を示し、ステップ3が適用されるテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法の構成例を示すシステム図である。本図3では、図2の示すステップ2が適用されるテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法に加え、さらに、パイロット光導入ミラー21とパイロット光導入ミラー22とが追加設定される。本ステップ3では、これらのパイロット光導入ミラー21とパイロット光導入ミラー22との追加処理後に、例えば、可視光レーザのパイロット光12をテラヘルツ波11へ重畳させる。【0024】 パイロット光導入ミラー21とパイロット光導入ミラー22とを追加し、可視光レーザのパイロット光12を、パイロット光導入ミラー21とパイロット光導入ミラー22の設定角度調整により、テラヘルツ波11の同軸上へ重畳させる。本処理において、シクロオレフィン板4へのテラヘルツ波11の軸上へ、パイロット光12の光軸が重畳するようにパイロット光導入ミラー21とパイロット光導入ミラー22の設定位置、設定角度等を調整する。この位置設定および角度調整により、テラヘルツ波11の光軸上へパイロット光12の光軸を重畳させる。【0025】 パイロット光12の光軸調整は、Siボロメーター5の出力信号を確認しながらの他に、可視光であるため黙視で確認しながらの調整も可能である。本調整により、パイロット光12の光軸とテラヘルツ光11の光軸とを、同一軸とすることができる。パイロット光12とテラヘルツ光11とを同軸に重ねた後のテラヘルツ光の光軸は、模擬的・擬似的に可視状態となる。【0026】 上記構成のテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法の実施の形態において、シクロオレフィン板4として、テラヘルツ光11に対して減衰特性をより小さくし、パイロット光12に対して反射特性をより高くする必要がある。このシクロオレフィン板4の具体例として、高機能樹脂(商品名;ZEONEX/日本ゼオン(株))がある。図4は、この商品名;ゼオネックス(ZEONEX)とポリエチレンとを比較した、光透過率の特性例を示している。【0027】 図4において、横軸を周波数[THz/テラヘルツ]、縦軸を透過率[Transmittance]としている。図4中の二つのグラフにおいて、上方の(a)がゼオネックス、下方の(b)がポリエチレンのそれぞれの特性グラフである。本図4によれば、ゼオネックスの方が透過特性に優れていることが知れる。なお、両測定には、同一厚の試験試料を用いている。【0028】 高機能樹脂のシクロオレフィン板4としての適用において、テラヘルツ波用のARコート(無反射コート)材料に使用が可能と判定される。テラヘルツ用各種オプティクス光学面に、波長に応じた厚さを形成することにより、反射を減らすことができる。高機能樹脂の各種の適用例を以下に列挙する。【0029】(テラヘルツ波用の各種レンズ材料) 平凸、凸凸、凹、ロッド、シリンドリカル、等光学で用いる各種レンズと同じ形態のレンズをテラヘルツ用に作ることができる。且つ、可視光とテラヘルツ波に対して同時にシクロオレフィン板4としての機能を満たすことができる。【0030】(テラヘルツ用の各種プリズム用材料) 45°直角、ダハ、ダブ、等光学で用いる各種レンズと同じ形態のレンズをテラヘルツ用に作ることができる。且つ、可視光とテラヘルツ波に対して同時にシクロオレフィン板4としての機能を満たすことができる。【0031】(テラヘルツ波用のビームサプライヤー、ビームスプリッターへ適用) 板状に加工して、一つのテラヘルツ波を表面反射波と透過波に分ける、ビームサプライヤーやビームスプリッターを作ることができる。且つ、可視光とテラヘルツ波に対して、同時にシクロオレフィン板4としての機能を満たすことができる。【0032】(テラヘルツ波用のファイバー材料) ファイバーにすることにより、空気中を伝搬することに不利なテラヘルツ波を、容易にハンドリングできる。且つ、可視光とテラヘルツ波に対して、同時にシクロオレフィン板4としての機能を満たすことができる。【0033】(テラヘルツ波用の導波路材料) 導波路形状にすることにより、空気中を伝搬することに不利なテラヘルツ波を高効率に伝播させることができる。且つ、可視光とテラヘルツ波に対して、同時にシクロオレフィン板4としての機能を満たすことができる。【0034】(テラヘルツ波用の実験に用いる) テラヘルツ波の高透過性を用いることにより、プレパラート(板状)、サンプル(柱状)入れ等に加工し、試料を載せたり入れたりし、分光等の実験に用いることができる。且つ、可視光とテラヘルツ波に対して同時にシクロオレフィン板4としての機能を満たすことができる。【0035】(テラヘルツ波用のミラー材料その1) テラヘルツ波を透過する特性を生かし、ダイクロイックミラーの基板材料となる。【0036】(テラヘルツ波用のミラー材料その2) テラヘルツ波を透過する特性を生かし、表面又は内部に線状の金属を存在させることにより、高精度で高効率なテラヘルツ波用ハーフミラーを作ることができる。【0037】(テラヘルツ波用のポラライザー) テラヘルツ波を透過する特性を生かし、表面又は内部に線状の金属を存在させることにより、高精度で高効率なテラヘルツ波用ポラライザーを作ることができる。【0038】(テラヘルツ波用のウィンドウ材料) テラヘルツ波を透過する特性を生かし、テラヘルツ波装置のウィンドウ材料となる。且つ、可視光とテラヘルツ波に対して同時に本機能を満たすことが出きる。又、テラヘルツ波に対してブリュースター角に、ウィンドウを配置することにより、本材料の持っている透過率に限りなく近い値で、テラヘルツ波を透過させることができる。【0039】(シリコン等の低屈折率分散半導体材料の代替え材料) テラヘルツ帯において、低屈折分散材料として一般的に使用されているシリコン、ゲルマニューム、ガリュームヒ素、等の半導体は、可視光と共に用いると可視光を吸収して、テラヘルツ波の透過率を減少させる。例として、テラヘルツ波と可視光を、同時に照射している実験系やテラヘルツ波発生装置の上記半導体部と置き換えることにより、高効率化が図れる。【0040】 なお、上述の実施形態は本発明の好適な実施の一例である。ただし、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施が可能である。 多様化の構成例およびそれに付随する効果例を以下に列挙する。 図6にシクロオレフィンとして、三井化学株式会社製の商品名アペルを用いてテラヘルツ波の透過試験を行った結果を示す。なお、該試験は、厚さ3.5mmのレンズを用い、入射角0度で行った。本例のおいても良好な透過率が得られた。 なお、本発明に関連する光学部品の厚さは特に限定されない。また、テラヘルツ波の入射角も特に限定されず広い範囲で有効である。【0041】【発明の効果】 以上の説明より明らかなように、本発明のテラヘルツ波光学系は、所定のテラヘルツ波を発生し、この発生されたテラヘルツ波の進行方向の前面に高機能樹脂により構成されたオプティクス光学面を設けられて構成している。本構成により、テラヘルツ帯波の透過特性に優れた装置を構成することができる。【図面の簡単な説明】【図1】本発明に関連するテラヘルツ波用光学部品、テラヘルツ帯波処理装置および同方法の実施形態が適用される、第1の処理手順例を示している。【図2】ステップ2が適用されるテラヘルツ帯波処理装置の構成例を示すシステム図である。【図3】ステップ3が適用されるテラヘルツ帯波処理装置の構成例を示すシステム図である。【図4】シクロオレフィンポリマーとポリエチレンとを比較した、光透過率の特性例を示したグラフである。【図5】超長波(VLF)からγ線に至る波長の周波数分布を示している。【図6】シクロオレフィンコポリマーの場合における光透過率を示したグラフである。【符号の説明】1、2、3 アパーチャー4 シクロオレフィン板5 Siボロメーター(検出器)10 テラヘルツ波発生装置11 テラヘルツ波12 パイロット光21、22 パイロット光導入ミラー テラヘルツ波発生源と、該テラヘルツ発生源から発生したテラヘルツ波の光軸上に配置されたシクロオレフィンの重合体のゼオネックス(登録商標)からなる光学部品と、可視光源とを備え、該可視光源からの可視光が前記テラヘルツ波の光軸上に乗るようにしたことを特徴とするテラヘルツ波光学系。 前記テラヘルツ波の周波数は100GHz〜10THzであることを特徴とする請求項1記載のテラヘルツ波光学系。