タイトル: | 特許公報(B2)_静電ナノピンセット及びこれを用いたナノマニピュレータ装置 |
出願番号: | 2000404006 |
年次: | 2007 |
IPC分類: | B82B 3/00,G01N 13/16,G01N 13/10,G12B 21/08 |
中山 喜萬 秋田 成司 原田 昭雄 大川 隆 JP 3973359 特許公報(B2) 20070622 2000404006 20001207 静電ナノピンセット及びこれを用いたナノマニピュレータ装置 中山 喜萬 599004210 大研化学工業株式会社 591040292 三木 久巳 100084342 中山 喜萬 秋田 成司 原田 昭雄 大川 隆 20070912 B82B 3/00 20060101AFI20070823BHJP G01N 13/16 20060101ALI20070823BHJP G01N 13/10 20060101ALI20070823BHJP G12B 21/08 20060101ALI20070823BHJP JPB82B3/00G01N13/16 101GG01N13/10 111KG12B1/00 601D B82B 1/00- 3/00 G01N 13/10-13/24 G12B 21/00-21/24 実開昭59−093874(JP,U) 実開昭64−016272(JP,U) 実開平03−040067(JP,U) 国際公開第98/005920(WO,A1) Philip Kim、Charles M. Lieber,"Nanotube Nanotweezers",Science,米国,1999年12月10日,Vol.286,No.5447,pp.2148-2150,発行所:American Association for the Advancement of Science 5 2002172600 20020618 9 20040430 山口 剛 【0001】【発明の属する技術分野】本発明はナノサイズの物質(以後、ナノ物質という)を把持したり放出したりできるナノピンセットに関し、またナノ物質を搬送制御してナノサイズ部品、ナノ分子デバイス等のナノ構造物を組み立てることができるナノマニピュレーター装置に関する。【0002】【従来の技術】近年の技術開発はますます極小領域に指向している。例えば、光・電子情報関連の新素材やナノサイズ部品の創製、細胞やタンパク質の集積による新しいバイオ関連機能物質の創製のように、ナノ領域における革新的な製造技術の開発が要望されている。【0003】このようにナノ物質を移動・積上げ等の搬送制御ができるためには、ナノ物質を把持したりそれを放出したりできるナノピンセットの開発が必要になる。このナノピンセットの第1原型は、Philip KimとCharles M.Lieberにより1999年12月10日に発行されたサイエンス誌上に発表された。図6〜図8はこのナノピンセットの製造工程図である。【0004】図6はテーパー加工されたガラスチューブ80の先端の側面図であり、この先端直径は約100nm、図示しない後端直径は1mmである。図7はナノピンセットの完成図である。前記ガラスチューブ80の周面に絶縁部82を介して二つの金電極膜84a、84bを形成する。この金電極膜にそれぞれカーボンナノチューブ86a、86bを突設状に固定して、ナノピンセット88が完成される。【0005】図8はナノピンセットに電圧を印加する概要図である。金電極膜84a、84bには接点90a、90bからリード線92a、92bが導出され、可変直流電源94の両端に結線されている。可変直流電源94の電圧を印加すると、カーボンナノチューブ86aは正に帯電し、カーボンナノチューブ86bは負に帯電する。これら正負の電荷の静電引力により、カーボンナノチューブ86a、86bの先端は内側に閉じ、この間にナノ物質96を挟んで挟持することができる。【0006】電圧を大きくするとカーボンナノチューブは更に閉じるから、より小さなナノ物質を挟持できる。電圧をゼロにすると静電引力は無くなり、カーボンナノチューブ86a、86bの弾性復元力により図7の状態に戻って、ナノ物質96を放出する。このように電圧の大小制御だけでナノピンセット88の開閉制御を行える利点を有し、ナノ物質の把持・放出が自在なナノピンセットとして画期的なものである。【0007】【発明が解決しようとする課題】しかし、このナノピンセット88は次のような弱点を有している。第1に、分子は種々の形状を有しており、2本のナノチューブでは確実に把持できないナノ物質が存在する。例えば、扁平なナノ物質であれば2本のカーボンナノチューブ86a、86bで把持できるが、球状ナノ物質や棒状ナノ物質は2本のナノチューブの把持では不安定で脱落する危険性がある。【0008】第2に、ガラスチューブ80をテーパー状にその先端を100hmまで微細加工しているから、特に先端部が強度的に弱くしかも脆い。第3に、金電極膜84a、84bをガラスチューブ80の全長に亘って形成し、ガラスチューブの直径が大きくなった後端部に 接点90a、90bを設けてリード線92a、92bを介して電源94に接続している。即ち、リード線がかなり太いので、ガラスチューブの拡径した後端部に電気接点を設けざるを得ない。そのために、金電極膜をガラスチューブの全長に形成するという困難さと効率の悪さがある。【0009】従って、本発明の目的は、球状ナノ物質や棒状ナノ物質を確実に把持して搬送制御できるナノピンセットを提供し、またその製造作業が簡単で耐久性のあるナノピンセットを提供でき、更にこのナノピンセットを利用したナノマニピュレータ装置を実現することである。【0010】【課題を解決するための手段】請求項1の発明は、ホルダーに基端部を固定して突設された3本以上の導電性ナノチューブと、この中の少なくとも3本以上の導電性ナノチューブにそれぞれ連結されたリード電極からなり、これらのリード電極間に電圧を印加してその静電引力により前記導電性ナノチューブの先端間を開閉自在に設けることを特徴とする静電ナノピンセットである。【0011】請求項2の発明は、カンチレバーに突設された突出部と、この突出部に基端部を固定して突設された3本以上の導電性ナノチューブと、この中の少なくとも3本以上の導電性ナノチューブにそれぞれ連結されたリード電極からなり、これらのリード電極間に電圧を印加して静電引力により前記導電性ナノチューブの先端間を開閉自在に設けることを特徴とする静電ナノピンセットである。【0012】請求項3の発明は、請求項1又は2に記載の静電ナノピンセットと、この静電ナノピンセットを試料に対しXYZ方向に移動制御する3次元駆動機構とから構成され、静電ナノピンセットでナノ物質を試料表面に搬送制御することを特徴とするナノマニピュレーター装置である。【0013】請求項4の発明は、静電ナノピンセットを構成する少なくとも1本の導電性ナノチューブを走査型プローブ顕微鏡用の探針として用いる請求項3に記載のナノマニピュレータ装置である。【0014】【発明の実施の形態】以下に、本発明に係る静電ナノピンセット及びこれを用いたナノマニピュレータ装置の実施形態を図面に従って詳細に説明する。【0015】図1は本発明に係る静電ナノピンセットの実施形態の概略斜視図である。カンチレバー2はカンチレバー部4とその先端に形成された突出部6から構成される。この突出部6の突出端6eは略水平に形成され、その周面は先端面6a、側面6b、6c及び後端面6dの4面から構成されている。【0016】カンチレバー部4の上平面及び側面には、所要幅の3本の電極膜12、13、14が形成され、これら電極膜の終端は突出部6の前記先端面6a及び側面6b、6cにまで延出して形成されている。これらの先端面6a及び側面6b、6cには導電性ナノチューブ8、9、10の基端部8b、9b、10bがコーティング膜16、17、18の被覆によりそれぞれ固着されている。【0017】この固着により、導電性ナノチューブ8、9、10は電極膜12、13、14にそれぞれ電気的に導通状態に設定される。導電性ナノチューブ8、9、10の先端部8a、9a、10aは突出部6の突出端6eより下方に突出し、これらの先端部8a、9a、10aがナノチューブ把持部11を構成して、材料であるナノ物質を把持したり放出したりできる作業爪となる。このようにして、カンチレバー2にナノチューブ把持部11を形成して、本発明に係る静電ナノピンセット20が構成される。【0018】本発明に係る静電ナノピンセットは、ナノチューブ把持部11を3本以上のナノチューブから構成している点に特徴を有する。この実施形態ではナノチューブは3本であり、この3本の爪によってナノ物質を包み込むように把持することができる。つまり、2本のナノチューブでは不安定な把持しかできないが、3本にすることにより任意の形状のナノ物質を安定確実に把持することが可能となる。特に、球状ナノ物質や棒状ナノ物質を確実に把持できるようになる。【0019】この静電ナノピンセット20の電極膜12、13、14の後端部には接点12a、13a、14aを介して制御回路21が接続される。この制御回路21は、可変直流電源22とアース24とスイッチ26から構成され、前記接点13a、14aはアース側に接続され、接点12aは高電位側に接続される。従って、電極膜12は正極となり、電極膜13、14は負極として機能する。【0020】一般に、ナノチューブには導電性のカーボンナノチューブや絶縁性のBN系ナノチューブ(窒化ホウ素)やBCN系ナノチューブ(炭窒化ホウ素)等がある。本発明に用いる導電性ナノチューブは電気伝導性を有するナノチューブであればよいから、導電性ナノチューブや導電材料で表面被覆した絶縁性ナノチューブが用いられる。被覆用導電材料には主に金属材料が好適である。【0021】導電性ナノチューブをカーボンナノチューブを例にとって説明すると、その直径は約1nm〜数十nmまであり、長さはナノオーダーからミクロンオーダーまでに分布し、そのアスペクト比(長さ/直径)は1000以上にも達する。また、カーボンナノチューブは高度の柔軟性と強靱性を有するから、その先端を開閉してナノ物質を把持・放出する材料としては好適である。【0022】上記実施形態において用いたカンチレバー2は、原子間力顕微鏡(AFM)に用いられるカンチレバー探針を転用したものである。このカンチレバー探針はシリコンやシリコンナイトライドを材料とし、半導体プラナー技術を用いて加工形成されている。従って、従来のガラス製品と比較して高強度で、耐久性に優れている。ただ、本発明では突出部6の突出端6eを先鋭加工せず、平坦面に形成している。即ち、本発明では突出部6を探針として用いず、導電性ナノチューブの固定用ホルダーとして用いるからである。【0023】コーティング膜16、17、18を形成するには、電子顕微鏡内で電子ビームにより有機ガスを分解し、この分解堆積物をコーティング膜として用いる。有機ガスが炭化水素系ガスの場合にはコーティング膜はカーボン膜となり、有機ガスが金属有機ガスの場合にはコーティング膜は金属膜となる。金属膜の方が導電性ナノチューブ8、9、10と電極膜12、13、14との導通性は確実になる。【0024】ナノチューブ基端部を突出部に固定する他の方法として、電子ビーム照射や通電加熱によりナノチューブ基端部を融着して突出部と一体的に固定することもできる。コーティング被膜と融着を併用すれば、ナノチューブをより強力に固定することができ、ナノチューブの脱落を防止して静電ナノピンセットの耐久性を向上できる。【0025】図2は球状ナノ物質を把持した前記実施形態の作用説明図である。まず、ナノチューブ8の長さを他のナノチューブ9、10より少し長く設定しておき、先端部8aが他の先端部9a、10aより下方に突出するように配置しておく。このナノチューブ8の先端部8aを探針として使用し、試料面上の球状ナノ物質28の場所と位置をAFM操作により検出確認する。【0026】次に、3本の先端部8a、9a、10aの中心部に球状ナノ物質28が内包されるようにナノチューブ把持部11を下動させて試料面に接触させる。この状態でスイッチ26をオンにすると、電極膜12、13、14を介して導電性ナノチューブ8、9、10の先端部8a、9a、10aに電圧が印加される。つまり、先端部8aは正極となり、先端部9a、10aは陰極となる。正極には正電荷が蓄積し、負極には負電荷が蓄積するから、両電極は静電引力により内方に撓み、ナノチューブ把持部11は球状ナノ物質28を把持して閉じる。スイッチ26をオフにすると、静電引力は消失し、ナノチューブの弾性復元力によりナノチューブ把持部11は開き、球状ナノ物質28を放出する。【0027】図3は棒状ナノ物質を把持した前記実施形態の作用説明図である。まず、ナノチューブ8の先端部8aを探針として使用し、試料面上の棒状ナノ物質30の場所と位置をAFM操作により検出確認する。【0028】次に、3本の先端部8a、9a、10aの間に棒状ナノ物質30が配置されるようにナノチューブ把持部11を下動させて試料面に接触させる。この状態でスイッチ26をオンにして先端部8a、9a、10aを静電引力により閉じると、棒状ナノ物質30が前後から把持される。この状態で、ナノチューブ把持部11を上動させると、棒状ナノ物質30は図示の如く確実に吊り上げられる。【0029】前記実施形態では、静電ナノピンセット20のナノチューブ把持部11を3本の導電性ナノチューブ8、9、10で構成した。ナノ物質の形状によっては、4本のナノチューブからナノチューブ把持部11を構成することもできる。このように、本発明は3本以上のナノチューブの開閉によりナノ物質を把持・放出する点に特徴を有した静電ナノピンセットである。【0030】図4は、本発明の静電ナノピンセットを用いたナノマニピュレータ装置の作動説明図である。試料32の表面には、材料となる球状ナノ物質28や棒状ナノ物質30が多数存在している。まず、この原料ナノ物質を静電ナノピンセット20のAFM操作により検出し、ナノチューブ把持部11により把持する。次に、図示しない3次元駆動装置により、静電ナノピンセット20を矢印a方向及び矢印b方向に移動し、ナノ構造物34の所望位置で原料ナノ物質を放出する。これらの操作を繰り返すことにより、様々なナノ物質を原材料として所望のナノ構造物34を試料32の表面に形成することができる。【0031】前述したように、導電性ナノチューブ8、9、10の閉操作は、電極膜12、13、14を介した電圧の印加による静電引力により行われる。また、その開操作は電圧の解除による導電性ナノチューブの弾性復元力により行われる。静電ナノピンセット20の移動制御はAFM(原子間力顕微鏡)の移動制御機構により実現される。【0032】図5は静電ナノピンセットの移動制御機構の構成図である。図中、32は試料、32aは試料表面、36は3次元駆動装置、38は半導体レーザ装置、40は反射ミラー、42は二分割光検出器、42aは上検出器、42bは下検出器、46はZ軸検出回路、48は表示装置、50はXYZ走査回路である。【0033】静電ナノピンセット20を試料32に対し配置し、そのナノチューブ把持部11をZ軸方向に移動させて試料表面32a上のナノ物質を把持する。その後、XYZ走査回路50で3次元駆動機構36を走査して、ナノ構造物の位置まで静電ナノピンセット20を移動する。【0034】この移動の過程では、ナノチューブ把持部11と試料表面32aとの対向距離を一定に保つように、ナノチューブ把持部11をZ軸方向に位置制御する必要がある。そのために、レーザビームLBをカンチレバー2により反射させ、反射ミラー40を介して二分割光検出器42に導入し、上下検出器42a、42bへの偏向を検出しながら、Z軸制御を行う。【0035】Z軸検出回路46でZ位置を検出し、XYZ走査回路50でXY位置を検出して、これらの位置情報を表示装置48に表示する。つまり、この表示装置48には試料表面の凹凸像が表示される。そして、ナノチューブ把持部11がナノ構造物の位置に移動した後、ナノチューブ把持部11を開いて把持してきたナノ物質を試料表面32a上に放出する。この操作を繰り返して、ナノ構造物を組み立てる。【0036】ナノチューブ把持部11の1本のナノチューブで、又は3本が閉じた状態のまま全体でAFM操作すれば、ナノ構造物の全体形状を表示装置48に撮像することもできる。従って、本発明のナノマニピュレータ装置はナノワールドを自在に構成できるナノロボットである。このナノマニピュレータ装置は真空、大気を含め種々の雰囲気中で使用できる。【0037】前記実施形態では、導電性ナノチューブに電圧を印加するリード電極として、カンチレバーに必要本数の電極膜を形成した。他の方法として、電極膜とリード線を組み合わせたり、リード線だけでリード電極を構成することもできる。極微の箇所には、長尺のカーボンナノチューブなどの導電性ナノチューブをリード線として利用することもできる。ナノチューブ同士の結合は、融着方式が最適である。これらの融着は、電子ビーム照射、イオンビーム照射、電流通電加熱などの方法により行える。【0038】本発明は導電性ナノチューブ間の静電気力でナノ物質を把持できる静電ナノピンセットである。従って、把持すべきナノ物質が絶縁性である場合には有効であるが、導電性ナノ物質の場合には短絡する可能性がある。しかし、この導電性ナノチューブの表面を絶縁被膜で被覆した場合には、導電性ナノ物質を把持した場合でも、導電性ナノチューブ間は短絡しないから、ナノピンセットとして有効に機能する。絶縁被膜としてはハイドロカーボン膜が好適に利用でき、電子ビーム照射により導電性ナノチューブ表面に被膜形成できる。絶縁膜の材料や被覆方法には他の公知材料や公知方法が利用できることは当然である。【0039】本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更などをその技術的範囲内に包含することは云うまでもない。【0040】【発明の効果】請求項1の発明によれば、3本以上の導電性ナノチューブをナノ物質を把持する部材として使用したから、扁平状のナノ物質だけでなく、球状ナノ物質や棒状ナノ物質など任意の形状のナノ物質を安定かつ確実に把持することができる。しかも導電性ナノチューブの開閉は電圧印加による静電引力及び電圧解除による弾性復元力により行えるから、開閉操作が簡単であり、ナノ物質の把持・移動・放出が容易に行える。【0041】請求項2の発明によれば、AFM測定に用いられる半導体製のカンチレバーを強度の静電ナノピンセットを提供できる。【0042】請求項3の発明によれば、静電ナノピンセットを試料に対しXYZ方向に移動制御する3次元駆動機構をこの静電ナノピンセットに装備したから、静電ナノピンセットでナノ物質を把持し、所望位置まで移動させ、そして任意形状のナノ構造物を組み立てることができるナノマニピュレーター装置を実現できる。【0043】請求項4の発明によれば、静電ナノピンセットを構成する3本以上の導電性ナノチューブから選ばれた1本のナノチューブを走査型プローブ顕微鏡用の探針として用いるから、試料表面の物性情報を検出できるナノマニピュレータ装置を実現できる。また、このナノマニピュレータ装置を用いれば、試料表面上のナノ物質の位置を探し出し、そのナノ物質の形状を確認しながら、ナノ物質の把持・移動・放出を行うことができるなど、優れた機能を有する。【図面の簡単な説明】【図1】本発明に係る静電ナノピンセットの実施形態の概略斜視図である。【図2】球状ナノ物質を把持した前記実施形態の作用説明図である。【図3】棒状ナノ物質を把持した前記実施形態の作用説明図である。【図4】本発明の静電ナノピンセットを用いたナノマニピュレータ装置の作動説明図である。【図5】静電ナノピンセットの移動制御機構の構成図である。【図6】テーパー加工されたガラスチューブの先端の側面図である。【図7】ナノピンセットの完成図である。【図8】ナノピンセットに電圧を印加する概要図である。【符号の説明】2はカンチレバー、4はカンチレバー部、6は突出部、6aは先端面、6bは側面、6cは側面、6dは後端面、6eは突出端、8・9・10は導電性ナノチューブ、8a・9a・10aは先端部、8b・9b・10bは基端部、12・13・14は電極膜、12a・13a・14aは接点、16・17・18はコーティング膜、20は静電ナノピンセット、21は制御回路、22は可変直流電源、24はアース、26はスイッチ、28は球状ナノ物質、30は棒状ナノ物質、32は試料、32aは試料表面、34はナノ構造物、36は3次元駆動機構、38は半導体レーザ装置、40は反射ミラー、42は二分割光検出器、42aは上検出器、42bは下検出器、46はZ軸検出回路、48は表示装置、50はXYZ走査回路、80はガラスチューブ、82は絶縁部、84a・84bは金電極膜、86a・86bはカーボンナノチューブ、88はナノピンセット、90a・90bは接点、92a・92bはリード線、94は電源、96はナノ物質、LBはレーザービーム。 3本以上の導電性ナノチューブの基端部をホルダーに固定して突設させ、この中の同一平面上にない少なくとも3本の導電性ナノチューブに絶縁被覆を設け、この絶縁被覆された導電性ナノチューブを電極に接続し、前記電極に電圧を印加してその静電力により前記導電性ナノチューブの先端部を開閉させることを特徴とする静電ナノピンセット。 前記開閉される3本以上の導電性ナノチューブのうち1本が他より突出した導電性ナノチューブであり、前記他より突出した1本をAFMの探針として使用する請求項1に記載の静電ナノピンセット。 前記開閉される3本以上の導電性ナノチューブを閉状態にして、導電性ナノチューブをAFMの探針として使用する請求項1又は2に記載の静電ナノピンセット。 導電性ナノチューブをリード線として利用する請求項1〜3のいずれかに記載の静電ナノピンセット。 請求項1〜4のいずれかに記載の静電ナノピンセットと、この静電ナノピンセットを試料に対しXYZ方向に移動制御する3次元駆動機構とから構成され、静電ナノピンセットでナノ物質を試料表面に搬送制御することを特徴とするナノマニピュレーター装置。