タイトル: | 特許公報(B2)_回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法 |
出願番号: | 2000347846 |
年次: | 2007 |
IPC分類: | C07C 51/02,C07C 63/26 |
矢崎 仁一 坂野 弘三郎 船越 信之 田中 一穂 JP 3942818 特許公報(B2) 20070413 2000347846 20001115 回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法 東洋製罐株式会社 000003768 月島機械株式会社 000165273 永井 義久 100082647 矢崎 仁一 坂野 弘三郎 船越 信之 田中 一穂 20070711 C07C 51/02 20060101AFI20070621BHJP C07C 63/26 20060101ALI20070621BHJP JPC07C51/02C07C63/26 A C07C 51/09 C07C 63/26 C07C 51/43 C08J 11/10 特開2002−155011(JP,A) 特開2000−212117(JP,A) 特開平07−001449(JP,A) 特開平07−060803(JP,A) 特開平11−114961(JP,A) 特開平06−262670(JP,A) 特表2003−527363(JP,A) 特開2001−151709(JP,A) 3 2002155012 20020528 15 20040528 守安 智 【0001】【発明の属する技術分野】本発明は、清涼飲料水の容器等に利用されているポリエチレンテレフタレート(以下、PETと略す)の廃棄物から、その原料としてのテレフタル酸を工業的に回収する方法に関する。【0002】【従来の技術】PETを分解し、原料となるモノマーを回収する方法としては、従来から、さまざまな方法が提案されている。その代表的なものとしては、▲1▼気相もしくは液相下メタノールによりPETを解重合し、テレフタル酸ジメチルを生成させるメタノリシス法、▲2▼エチレングリコール(以下、EGと略す)によりPETを解重合し、反応中間体であるテレフタル酸ビスヒドロキシエチルを生成させてポリマー原料として使用するグリコリシス法、あるいは▲3▼生成したテレフタル酸ビスヒドロキシエチルをメタノールによりテレフタル酸ジメチルに変換するエステル交換法がある。【0003】しかしながら、▲1▼のメタノリシス法では、反応温度が177℃前後と低いため、反応を長時間行う必要がある。▲2▼のグリコリシス法では、▲1▼同様、反応を長時間行う必要があるという点に加え、完全なモノマーまで分解するのは困難である。また、生成したテレフタル酸ビスヒドロキシエチルの一部は、EGに溶解するので、その分離は煩瑣となり、収率がよくない。▲3▼のエステル交換法では、生成したEGとメタノールの分離、及びメタノールに溶解するテレフタル酸ジメチルとメタノールとの分離がともに困難である。【0004】そこで、この種の問題を解決すべく、▲4▼アルカリ水溶液によりPETを加水分解して、生成するテレフタル酸金属塩を酸により中和し、テレフタル酸を析出させる加水分解法や、▲5▼EG中で加アルカリ分解する特開平9−286744号公報に記載する方法が提案されている。【0005】【発明が解決しようとする課題】しかし、▲4▼の加水分解法や、▲5▼の公報記載の方法によっても、そのテレフタル酸の回収率において満足できる方法とはいえず、回収率を向上させようとすると著しく処理時間がかかるという問題を抱えている。また、従来の方法は、実験室段階のものにすぎないため、実用的かつ工業的なプロセスの確立が要請されている。【0006】そこで、本発明の課題は、テレフタル酸の回収率が高い上に、処理時間が短く、しかも、実用的かつ工業的なプロセスとなる回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法を提供することにある。【0007】【課題を解決するための手段】 上記課題を解決した本発明は次記のとおりである。 <請求項1記載の発明> 回収ポリエチレンテレフタレート粉砕品を溶媒中にて、ポリエチレンテレフタレート等モルまたは過剰のアルカリの存在下で、テレフタル酸塩と溶媒とに加熱反応分解し、生成したテレフタル酸塩からテレフタル酸を回収する方法であって、 前記加熱反応分解に先立って、前記粉砕品を290〜330℃で5分以上加熱することにより熱劣化させることを特徴とする回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法。【0009】 (請求項1の作用効果) 回収PET粉砕品は、清涼飲料水のPET容器等を粉砕してできたものであるが、清涼飲料水の容器等は、その部位によって反応分解に要する時間が異なる。例えば、EG500g中に回収PET粉砕品150gを投入し、180℃に昇温した後、炭酸ナトリウム90gを投入し、攪拌速度300rpmで25分間攪拌した場合、反応分解しなかった回収PET粉砕品の量(残量)は、その部位がどこであったかによって、表1に示すような量となる。【0010】【表1】【0011】 したがって、さまざまな部位からなる回収PET粉砕品を完全に分解するには、反応分解の最も遅い部位を完全に分解することができるだけの時間をかけなければならない。つまり、反応分解の速い部位については、反応分解終了後も反応分解の最も遅い部位のために加熱反応分解処理を継続することになるので、処理効率が悪く、かつ総合的に熱経済上も不利になる。【0012】 しかし、請求項1に係る本発明は、加熱反応分解に先立って、粉砕品を熱劣化させる、特に、この熱劣化を290〜330℃で5分以上行うので、回収PET粉砕品の非晶質部は、結晶化して、反応分解が起こりやすい状態になる。したがって、反応分解時間を短縮でき、処理効率が向上する。【0013】 <請求項2記載の発明> 熱劣化をスクリュー押出機により行う請求項1記載の回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法。【0014】(作用効果)スクリュー押出機を用いることで熱劣化を連続的にかつ簡易に行なうことができる。【0015】 <請求項3記載の発明> 熱劣化した粉砕品のもつ熱を加熱反応分解に利用する請求項1または2記載の回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法。【0016】(作用効果)熱劣化した粉砕品のもつ熱を、加熱反応分解に利用するので、熱の有効利用となり、経済的な処理方法となる。また、加熱反応分解工程に供給する熱劣化した粉砕品の量を調整することにより、加熱反応分解工程での温度調整に利用できる。【0017】【発明の実施の形態】以下、図面を使って、本発明の実施の形態を説明する。本発明は、加熱反応分解(以下、反応分解ともいう)に先立って、前記粉砕品を熱劣化させることを特徴とするものであるが、本実施の形態の説明においては、まず、この熱劣化処理を行わない場合(基本形態)を説明し、その後に、熱劣化処理を行う場合(本発明に係る実施の形態)を説明する。また、本発明においては、溶媒として、水、EG、プロピレングリコール(PG)、シリコンオイル等を使用することができるが、基本形態および本発明に係る実施の形態においては、EGを使用する場合について説明する。【0018】『第1の基本形態』図1〜図4及び図6は第1の基本形態を示したものである。本形態においては、回収PET粉砕品を原料とする。この粉砕品とは、PETボトルなどのPET廃棄物を切断、破断、あるいは粉砕したもの等を含む意義である。好適には2〜8mm角程度の粉砕品である。【0019】(反応分解工程)まず、本形態においては、回収PET粉砕品の反応分解を行うが、この反応分解は、図2に詳細例を示すスクリュウプレス型横型反応分解装置を使用して行うことができる。この横型反応分解装置は、本体部1Aとこの本体部1Aの先端に位置する先細部1Bとを有する筒体1内に、先細部1Bに対応した部分が先細のスクリュウコンベア2を備えたもので、この横型反応分解装置内に、回収PET粉砕品と、PET等モル相当または過剰のアルカリと、EGとを投入し、主に本体部1A内で、常圧で回収PET粉砕品をテレフタル酸塩とEGとに反応分解し、反応分解スラリーを先細部1Bから絞り出すものである。【0020】本体部1Aの基部には、回収PET粉砕品及びアルカリを投入するための投入口3を有し、スクリュウコンベア2の回転軸には、EGを投入するための投入口4を有する。筒体1は、周囲にジャケットが備わっており、このジャケットには熱媒体の入口5及び出口6が備わっている。【0021】回収PET粉砕品およびアルカリを投入口3から、EGを投入口4から投入すると、スクリュウコンベア2が、主に本体部1A内において、回収PET粉砕品とアルカリとEGとを攪拌しつつ先端側に送り、回収PET粉砕品をテレフタル酸塩とEGとに連続的に反応分解する。【0022】また、生成した反応分解スラリーは先細部1Bから絞り出す。したがって、バックミキシングせず均一に前方に送るのみの処理となる。【0023】さらに、先細部1B及びスクリュウコンベア2の先端部を先細にして絞り手段としたことにより、EGの添加量を少なくすることができ、しかも、次のろ過工程(固液分離工程)における時間当たりのろ過効率が高くなる。ちなみに、生成した反応分解スラリー中のEGの量は、絞り手段を設けない場合、約70質量%になるのに対し、絞り手段を設けた場合は約30質量%になる。【0024】添加するアルカリとしては、炭酸ナトリウムを主体とし、20%以下の範囲で水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を含有させたものを使用することができる。水酸化ナトリウムを含有させると、より効率的に反応分解する。炭酸ナトリウムを使用すると、反応分解開始と同時に炭酸ガスが発生するため、不活性ガス(たとえば窒素ガス)の供給が不要になる。炭酸ナトリウムは、そのコストが水酸化ナトリウムの約1/2なので、経済的である。【0025】発生する炭酸ガスは、ガス通路7より系外へ排出する。ガス通路7には切替バルブを設置してあり、炭酸ガスの排出と不活性ガス(たとえば窒素ガス)の供給との切替ができるようになっている。【0026】反応分解開始前に、予め、回収PET粉砕品に直接噴霧などの手法によりアルカリを接触させると、EGを並存させる場合と比較して、反応開始時間を1/5〜1/8に短縮できる。反応分解温度としては、例えば160〜180℃とすることができる。【0027】 (固液分離・溶解・不純物除去工程) 反応分解工程で生成したテレフタル酸塩とEGとを含有する反応分解スラリーは、ポンプや輸送管などにより、固液分離・溶解・不純物除去機、例えば、図3に詳細を示す水平ベルト型真空ろ過溶解機102に送る(図1の水平ベルト型真空ろ過溶解機102は模式的に示してある)。この水平ベルト型真空ろ過溶解機102は、そのろ過セクションで、前記反応分解スラリーからEGを分離する。分離の詳細な方法は、次述するが、これによらず、遠心分離機などの分離機により行うこともできる。【0028】反応分解スラリー中のEGは、真空ポンプ61により、ろ液槽71に吸引し、このろ液槽71に集めたEGは、ポンプ42により、輸送管12を通して、ろ液槽81に集める。このろ液槽81に集めた粗EGは、適宜の時点で、ポンプ43により、輸送管13を通して精製塔110に通液し、不純物を除去する。この不純物の除去は、蒸留操作、または膜分離により行うこともできる。【0029】不純物を除去した前記EGは、輸送管14を通して、ろ液槽82に集める。このろ液槽82に集めたEGは、適宜の時点で、ポンプ52により輸送管30を通してスクリュウプレス型横型反応分解装置に送り、反応分解の溶媒原料として再利用する。【0030】不純物を除去していない粗EGもテレフタル酸の純度に影響しない限り、反応分解の溶媒原料として再利用することができる。また、精製したEGの一部は、系より抜き出して、PETの合成原料などに利用することができる。【0031】EGを分離して回収したテレフタル酸塩は、水平ベルト型真空ろ過溶解機102の溶解セクションに連続的に移動し、上部から散布する温水によって溶解する。温水としては、例えば、テレフタル酸塩の3〜5倍量、約80℃のものを使用することができ、テレフタル酸塩の水溶液を生成する。この温水に代えて、後述の吸着塔における洗浄水、固液分離・洗浄工程における排水、及び濃縮・晶析・芒硝分離工程における蒸発水分を冷却して得た凝縮水等を用いることもできる。【0032】テレフタル酸塩の水溶液は、真空ポンプ61により、水溶液分離槽72に吸引する。吸引した水溶液はポンプ51により、輸送管18を通して、次の溶解性不純物除去工程に送る。【0033】水平ベルト型真空ろ過溶解機102に備わるろ布96の下流端には、スクレーパ98を対向して配置してあり、不溶解性不純物を除去するようになっている。【0034】(不純物除去工程)テレフタル酸塩の水溶液は、ポンプ51により、輸送管18を通して、不純物除去器、例えば、堅型円筒吸着用活性炭充填カラム104に、好適には5〜10mm/m2・minで通液する。これにより、テレフタル酸塩水溶液に混入する溶解性の不純物を除去することができる。通液後、活性炭は、温水で洗浄する。洗浄排水は、輸送管16を通して、水平ベルト型真空ろ過溶解機102へ再生洗浄水として戻し、再利用することができる。また、微粉炭除去のため、粒状炭または造粒炭を純水で逆洗いしておくとよい。この工程における不純物の除去は、イオン交換樹脂の併用、イオン交換樹脂による吸着、あるいは、膜分離などによって行うこともできる。【0035】(中和・析出工程)不純物を除去したテレフタル酸塩水溶液は、中和槽114で、酸によりpH2〜4程度に中和する。添加する酸としては、硫酸、塩酸、リン酸、硝酸等の鉱酸を使用することができるが、硫酸を使用するのが好ましい。【0036】中和槽114では、酸を均一に撹拌及び混合させて中和反応を確実に行う必要がある。中和反応により生成したテレフタル酸のスラリーは、堅型円筒撹拌槽からなる析出槽105に集める。この析出槽105は、熱媒体92が通るジャケット91を備えている。【0037】 中和槽114においては、酸を添加すると、瞬時に中和反応が起こり、テレフタル酸の微少な結晶が生成するが、この微小な結晶の集合体は、未反応の酸を内部に包合してしまう。そして、この内部に包合した酸は、析出槽105において内部より浸出し、時間が遅れ再度中和反応を起こすことになる。このことは、pH調整、テレフタル酸の生成にとって障害となる。【0038】 そこで、かかる事態を防止するため、図4に示すように、中和槽114において、撹拌機114Aによる撹拌と同時に、付設した超音波発生装置114Bによって、超音波による微振動をテレフタル酸のスラリーに起こさせるとよい。これにより、テレフタル酸微小結晶による酸の包合を防止することができ、pH調整がよくなるので、テレフタル酸の生成がよくなる。【0039】中和槽114は析出槽105と比べて容量が小さくてよく、1/50〜1/500程度とすることができる。【0040】 中和槽114においては、撹拌機114Aにより撹拌している状態で、酸(硫酸)を撹拌軸内に供給し、この撹拌軸内と連通する撹拌羽根114Cの軸114D内を通してテレフタル酸塩水溶液(テレフタル酸のスラリー)中に噴出させる。これにより、撹拌及び混合効果が高いものとなる。結果、単に酸(硫酸)を中和槽114の上部より供給する場合より、テレフタル酸微小結晶による酸の包合防止効果が大きくなり、テレフタル酸の結晶粒径が均一化する。【0041】析出槽105に集めたテレフタル酸スラリーは析出槽で撹拌する。これにより、テレフタル酸の結晶粒径が均一化するとともに、結晶サイズも成長する。【0042】この析出槽105では、50〜95℃、例えば約85℃の加熱状態を維持したまま撹拌を行い、均一に成長した結晶を底部よりポンプ45により抜き出す。これにより、テレフタル酸とアルカリ塩とを含有するスラリー中の、テレフタル酸の結晶粒子の粒度分布が均一化し(図5参照。(A)は常温、(B)は加熱の場合をそれぞれ示す)、固液分離工程でのろ過速度が表2のように高まる。【0043】【表2】【0044】(固液分離・洗浄工程)中和・析出工程で生成したテレフタル酸の析出スラリーは、ポンプ45により、輸送管17を通して、固液分離機、例えば水平ベルト型真空ろ過機106に送る。【0045】この水平ベルト型真空ろ過機106の詳細を、図6をもとに説明する。まず、析出スラリーは、ろ布96上に送り、水平方向(本図面では、左から右方向)に移動する。この移動の際、スラリーが含有する酸、アルカリ塩は、真空ポンプ61により、ろ布96と同様に移動する真空箱97に吸引し、輸送管26Aを通して、ろ液槽71Aに集める。【0046】ろ布96は、温水で洗浄するが、この洗浄水は、いったんろ布洗浄装置27Aに集め、その後、ポンプ50により、輸送管27を通して、洗浄装置27B1に集める。この洗浄装置27B1に集めた洗浄水は、スラリーから酸、アルカリ塩を吸引除去して得たテレフタル酸の洗浄に使用する。さらに、このテレフタル酸を洗浄した洗浄水は、真空ポンプ61により、真空箱97に吸引し、輸送管28を通して、ろ液槽72Aに集める。このろ液槽72Aに集めた洗浄水は、ポンプ51により、輸送管29を通して、洗浄装置27B2に集め、再び、テレフタル酸の洗浄水として使用する。【0047】再度、テレフタル酸を洗浄した洗浄水は真空ポンプ61により真空箱97に吸引し、輸送管26Bを通して、ろ液槽71Bに集める。ろ液槽71Bに集めた洗浄水は、上流のテレフタル酸塩の溶解に利用することもできる。【0048】このような向流洗浄により、表3に示すようにテレフタル酸の純度が高まる。【0049】【表3】【0050】(濃縮・晶析・芒硝分離(アルカリ塩回収)工程)ろ液槽71A,71Bに集めたアルカリ塩は、ポンプ42A,42Bにより、輸送管20を通して、いったんろ液槽83に集める。その後、ポンプ48により、輸送管21および水分蒸発のための加熱器32を通して、結晶缶33に供給する。【0051】結晶缶33は真空ポンプ62により減圧状態にしてあるので、アルカリ塩スラリー中の水分は蒸発し、蒸発した水分は減圧管31中に設けた冷却器34により冷却凝縮し、固液分離・溶解・不純物除去工程で使用する水として、あるいは固液分離・洗浄工程で使用するろ布及びケーキ洗浄水として再利用する。【0052】結晶缶33での結晶スラリーは、ポンプ46により、輸送管19を通して、遠心分離機108に送る。この遠心分離機108は、アルカリ塩と、EG及びアルカリに固液分離する。分離したアルカリ塩は、ベルトコンベア113により、間接加熱乾燥機、たとえばジャケット94、シャフト95に熱媒体を循環することができる構造を有したパドル式回転真空乾燥機109に送る。この乾燥機109において、真空下で乾燥することにより、純度の高いアルカリ塩を回収する。【0053】中和工程で硫酸を使用すると、ここでは、アルカリ塩として、芒硝を回収することができ、各種用途の製品とすることができる。【0054】また、この際、分離するEG及びアルカリは、輸送管23を通して、いったんろ液槽84に集め、さらに、ポンプ49により輸送管24を通して、前述のろ液槽81に混入する。その後の処理は、前述同様である。【0055】(乾燥・粉砕工程)他方、水平ベルト型真空ろ過機106で洗浄したテレフタル酸は、ベルトコンベア112により、間接加熱乾燥機、例えばジャケット94、シャフト95に熱媒体を循環することができる構造を有したパドル式回転真空乾燥機107に送る。この乾燥機107は、真空ポンプ63により真空としてあるため、テレフタル酸の乾燥を短時間で、しかも変質させることなく行うことができる。これにより、純度の高いテレフタル酸を回収することができる。乾燥の際に蒸発する水分は、輸送管25を通して冷却した後、輸送管22を通して、ろ液槽83に集める。【0056】続く回収テレフタル酸の粉砕は公知の手段により行うことができる。【0057】『第2の基本形態』図7は第2の基本形態を示したものである。この形態は、竪型円筒撹拌槽101を用いて反応分解を行うものである。竪型円筒撹拌槽101は、熱媒体92が流通する加熱ジャケット91を外壁に有し、温度調節用の冷却水コイル93を内部に有し、例えば160℃〜180℃の温度条件及び常圧で、30〜90分程度撹拌して反応分解を図る。【0058】テレフタル酸塩とEGとに分解した反応分解スラリーは、ポンプ41により輸送管11を通して直接、図3に示す水平ベルト型真空ろ過溶解機102に送ることができる他、絞り装置100で絞り操作を行った後、水平ベルト型真空ろ過溶解機102に送ることができる。【0059】絞り装置100は、スクリュウプレス型構造を有するもので、本体部内に先細のスクリュウコンベア100Aを配置したものである。絞り装置100本体部の適宜の位置から、ポンプ47により、EGを竪型円筒撹拌槽101に返送することができる。絞り装置100を設けることで、EGの補給量を少なくすることができるとともに、次のろ過工程(固液分離工程)における時間当たりのろ過効率を高いものとすることができる。【0060】『第3の基本形態』図8及び図9は第3の基本形態を示したものである。この形態は、第2の基本形態と同様に、竪型円筒撹拌槽101を用いて反応分解を行うものである。【0061】また、竪型円筒撹拌槽101にて反応分解を行った反応分解スラリーは、ポンプ41により、輸送管11を通して、図9に示す、水平ベルト型真空ろ過機106A(第1の基本形態における後段の水平ベルト型真空ろ過機106と同様の構造を有する)に送る。この水平ベルト型真空ろ過機106においては、EGを除去するとともに、洗浄水によって洗浄を行う。【0062】EGを除去して回収したテレフタル酸塩は、ケーキ輸送ベルトコンベア111により、水平ベルト型真空ろ過機106Aとは別に設置した竪型円筒撹拌槽103に投入する。この竪型円筒撹拌槽103では、例えばテレフタル酸塩の3倍量、約80℃の温水を投入してテレフタル酸塩を溶解する。この温水としては、前述の系内での再生水、ならびに堅型円筒吸着用活性炭充填カラム104における洗浄排水を輸送管16により戻した再生洗浄水を利用することができる。【0063】テレフタル酸塩の水溶液は、ポンプ44により、輸送管15を通して、溶解性不純物除去器、例えば堅型円筒吸着用活性炭充填カラム104に供給する。この際、テレフタル酸塩の水溶液は、竪型円筒撹拌槽103に付設したチェックフィルター99などにより、不溶解性不純物を除去しておくことが好ましい。【0064】なお、この第3の基本形態においても、第2の基本形態と同様に、テレフタル酸塩とEGとに分解した反応分解スラリーは、予め絞り装置100で絞り操作を行った後、水平ベルト型真空ろ過機106Aに供給することができる。【0065】『その他の基本形態』テレフタル酸塩とEGとの反応分解スラリーからEGを分離するのに際して、水平ベルト型真空ろ過溶解機102によることなく、遠心分離機などの分離機を用いることができることについては、先に述べたとおりである。また、上記各実施の形態の要素を適宜組み合わせてシステムを構築することが可能である。【0066】『本発明に係る実施の形態』次に、本発明の実施の形態について説明するが、本発明は、以上で説明した基本形態における反応分解(加熱反応分解)工程に先立って、回収PET粉砕品を熱劣化させることを特徴とするものである。以下では、図10を参照しながら、本発明に係る実施の形態を詳説する。本実施の形態における熱劣化処理は、熱処理装置、本実施の形態においては、スクリュー押出機170にて行う。このスクリュー押出機170は、筒状で内部が真空になっている外筒171を有し、その内部には外筒171の軸方向を軸とするスクリュー172を備えている。また、外筒171の基部上側には回収PET粉砕品を投入するためのホッパー173を備えるとともに、外筒171の先端部には、熱劣化した回収PET粉砕品を排出するための、ダイ174を備えている。さらに、外筒171の周縁部には熱媒体を通すジャケット175を備えている。【0067】ホッパー173から回収PET粉砕品を投入すると、外筒171内に備わるスクリュー172が、かかる回収PET粉砕品を先端方向(紙面左から右への方向)へ送り、これとともにジャケット175により回収PET粉砕品を加熱し、連続的に熱劣化させる。この際、回収PET粉砕品の加熱は、290〜330℃で5〜20分、行うとよい。【0068】また、以上のような熱劣化処理は、図11に概念的に示した、加熱ロール機190によっても行うことができる。加熱ロール機190は、PET投入容器192と、2軸の加熱ロール191A及び191Bとを備えており、加熱ロール191A及び191Bは、適宜の温度、本実施の形態では350℃に加熱され、他の加熱ロールと対向する面が下方向へ向かうように回転している。【0069】回収PET粉砕品をPET投入容器192に投入すると、加熱ロール191A及び191Bは、回収PET粉砕品を、加熱ロール191Aと加熱ロール191Bとの間を通して下方向へ送りながら加熱し、連続的に熱劣化させる。【0070】以上のようにして熱劣化させた回収PET粉砕品は、粉砕機180により、3〜5mm程度の大きさにカットして、反応分解工程に送る。以後の処理は、基本形態に示したのと同様である。【0071】ただ、反応分解工程においては、さらに熱を使用することになるので、熱劣化し粉砕した回収PET粉砕品のもつ熱を有効に利用できるよう、回収PET粉砕品を貯留せず連続的に反応分解装置に送り込むのがよい。この反応分解装置としては、基本形態で示したものの他、先に示したスクリュー押出機170同様の構成のものを使用することもできる。これによる場合は、ホッパー173から熱劣化した回収PET粉砕品の他、EG及びアルカリを投入する。これにより、ダイ174から反応分解スラリーが排出される。【0072】【実施例】(実施例)6〜8mm角の回収した粉砕PETを本実施の形態で示したスクリュー押出機に連続的に供給し、280〜300℃で加熱した。この加熱により熱劣化した回収PET粉砕品は、粉砕機により、さらに粉砕し、3〜5mm角とした(熱劣化・粉砕工程)。【0073】粉砕機により粉砕した回収PET粉砕品は、150mmφ×200mmHの加熱ジャケットを外壁に有する竪型円筒撹拌槽に投入した。竪型円筒撹拌槽には、予めEG1800gを満たし、180℃に昇温しておいた。投入する回収PET粉砕品の量は600gとし、この際には、炭酸ナトリウム360gも投入した。投入後、15分間攪拌した(反応分解工程)。【0074】これにより生成した反応分解スラリーを、固液分離し固形テレフタル酸塩を得、この固形テレフタル酸塩を水で溶解させた。この場合の残留未反応PETは0gで反応率は100%であった。【0075】(比較例)150mmφ×200mmHの加熱ジャケットを外壁に有する竪型円筒撹拌槽にEG1800gを満たし、180℃に昇温した後、6〜8mm角の回収した粉砕PET600gと炭酸ナトリウム360gとを投入し、30分間攪拌した。【0076】これにより生成した反応分解スラリーを、固液分離し固形テレフタル酸塩を得、この固形テレフタル酸塩は水で溶解させた。この場合の残留未反応PETは22gで反応率は96.3%であった。【0077】以上のことから、反応分解に先立って熱劣化すると、テレフタル酸の回収率が高くなる上に、処理時間が短くなることがわかった。【0078】【発明の効果】以上で説明したとおり、本発明にかかる回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法によれば、テレフタル酸の回収率が高い上に、処理時間が短く、しかも、実用的かつ工業的なプロセスとなる。【図面の簡単な説明】【図1】第1の基本形態全体のフローシートである。【図2】 横型反応分解装置の概念図である。【図3】水平ベルト型真空ろ過溶解機の概念図である。【図4】中和槽の構成例の概要図である。【図5】中和工程での加熱の有無による、テレフタル酸の粒度分布グラフである。【図6】水平ベルト型真空ろ過機の概要図である。【図7】第2の基本形態全体のフローシートである。【図8】第3の基本形態全体のフローシートである。【図9】第3の基本形態における前段の固液分離工程に用いる水平ベルト型真空ろ過機の概要図である。【図10】スクリュー押出機の模式断面図である。【図11】加熱ロール機の模式概念図である。【符号の説明】1…筒体、1A…本体部、1B…先細部、2,100A…スクリュウコンベア、3,4…投入口、5…熱媒体の入口、6…熱媒体の出口、7…ガス通路、11〜25,26A,26B,27〜30…輸送管、27A…ろ布洗浄装置、27B1,27B2…洗浄装置、31…減圧管、32…加熱器、33…結晶缶、34…冷却器、41,42,42A,42B,43〜52…ポンプ、61〜63…真空ポンプ、71,71A,71B,72A,81〜84…ろ液槽、72…水溶液分離槽、91,94…ジャケット、92…熱媒体、93…冷却水コイル、95…シャフト、96…ろ布、97…真空箱、98…スクレーパ、99…チェックフィルター、100…絞り装置、101,103…竪型円筒撹拌槽、102…水平ベルト型真空ろ過溶解機、104…堅型円筒吸着用活性炭充填カラム、105…析出槽、106,106A…水平ベルト型真空ろ過機、107,109…パドル式回転真空乾燥機、108…遠心分離機、110…精製塔、111〜113…ベルトコンベア、114…中和槽、114A…撹拌機、114B…超音波発生装置、114C…撹拌羽根、114D…撹拌羽根の軸、170…スクリュー押出機、171…外筒、172…スクリュー、173…ホッパー、174…ダイ、175…ジャケット、180…粉砕機、190…加熱ロール機、191A,191B…加熱ロール、192…PET投入容器。 回収ポリエチレンテレフタレート粉砕品を溶媒中にて、ポリエチレンテレフタレート等モルまたは過剰のアルカリの存在下で、テレフタル酸塩と溶媒とに加熱反応分解し、生成したテレフタル酸塩からテレフタル酸を回収する方法であって、 前記加熱反応分解に先立って、前記粉砕品を290〜330℃で5分以上加熱することにより熱劣化させることを特徴とする回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法。 熱劣化をスクリュー押出機により行う請求項1記載の回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法。 熱劣化した粉砕品のもつ熱を加熱反応分解に利用する請求項1または2記載の回収ポリエチレンテレフタレート粉砕品からのテレフタル酸の工業的回収方法。