タイトル: | 特許公報(B2)_ヌクレオシド化合物の製造方法 |
出願番号: | 2000141800 |
年次: | 2010 |
IPC分類: | C12P 19/40,C07H 1/00,C07H 19/073,C07H 19/167,C07H 19/173,C12N 15/09 |
肉丸 誠也 中村 武史 JP 4469460 特許公報(B2) 20100305 2000141800 20000515 ヌクレオシド化合物の製造方法 三井化学株式会社 000005887 宮崎 昭夫 100123788 石橋 政幸 100106138 緒方 雅昭 100127454 肉丸 誠也 中村 武史 JP 1999132144 19990513 20100526 C12P 19/40 20060101AFI20100428BHJP C07H 1/00 20060101ALI20100428BHJP C07H 19/073 20060101ALI20100428BHJP C07H 19/167 20060101ALI20100428BHJP C07H 19/173 20060101ALI20100428BHJP C12N 15/09 20060101ALN20100428BHJP JPC12P19/40C07H1/00C07H19/073C07H19/167C07H19/173C12N15/00 A C12P 19/00-19/64 JSTPlus/JMEDPlus/JST7580(JDreamII) PubMed WPI BIOSIS(STN) CAplus(STN) MEDLINE(STN) 特開昭61−233696(JP,A) 特開昭59−213397(JP,A) 特開昭62−253393(JP,A) 3 2001026599 20010130 13 20060614 滝口 尚良 【0001】【発明の属する技術分野】本発明は、ヌクレオシドホスホリラーゼを用いたヌクレオシド化合物の製造方法に関する。各種のヌクレオシド及びそのアナログ化合物は、抗ウイルス医薬品、抗ガン医薬品やアンチセンス医薬品などの原料または原体として使用される。【0002】【従来の技術】ヌクレオシドホスホリラーゼはリン酸存在下でヌクレオシドのN−グリコシド結合を加リン酸分解する酵素の総称であり、リボヌクレオシドを例にすると次式で表される反応を触媒する。【0003】リボヌクレオシド+リン酸(塩)→核酸塩基+リボース1−リン酸プリンヌクレオシドホスホリラーゼとピリミジンホスホリラーゼに大別される該酵素は、広く生物界に分布し、哺乳類、鳥類、魚類などの組織、酵母、細菌に存在する。この酵素反応は可逆的であり、逆反応を利用した各種ヌクレオシド化合物の合成が以前より知られている。【0004】例えば、2’−デオキシリボース1−リン酸と核酸塩基(チミン、アデニンまたはグアニン)からチミジン(特開平01−104190号公報)、2’−デオキシアデノシン(特開平11−137290号公報)または2’−デオキシグアノシン(特開平11−137290号公報)を製造する方法が知られている。更に、Agric. Biol. Chem., Vol.50 (1), PP.121〜126, (1986)では、イノシンをリン酸存在下で、Enterobacter aerogenes由来のプリンヌクレオシドホスホリラーゼを用いた反応により、リボース1−リン酸とヒポキサンチンに分解した後、イオン交換樹脂で単離したリボース1−リン酸と1,2,4−トリアゾール−3−カルボキサミドより、同じくEnterobacter aerogenes由来のプリンヌクレオシドホスホリラーゼにより、抗ウイルス剤であるリバビリンを製造する技術が報告されている。【0005】しかしながら、該酵素の逆反応を利用して、ペントース−1−リン酸またはその塩と核酸塩基よりヌクレオシド化合物を生成させる反応は平衡反応であるため、転化率が向上しないという技術的欠点を有していた。【0006】【発明が解決しようとする課題】工業的にヌクレオシド化合物を製造する場合、高い転化率で反応を進行させることが、原料コストの低減化ならびに製品純度の向上のためには必須である。【0007】すなわち、本発明の目的は、ペントース−1−リン酸と核酸塩基もしくは核酸塩基アナログとを、ヌクレオシドホスホリラーゼ活性の存在下に反応させる工程を有し、同反応におけるヌクレオシド化合物の転化率が向上している汎用性の高いヌクレオシド化合物の製造方法を提供することにある。【0008】【課題を解決するための手段】本発明者等はこれら課題を解決するため鋭意検討した結果、反応液にリン酸イオンと難水溶性の塩を形成しうる金属カチオンを存在させると、反応の副生成物であるリン酸イオンが難水溶性の塩として沈殿し反応系外に除外されることにより、反応の平衡がヌクレオシド化合物合成方向へ移動し、反応転化率が向上することを見出した。【0009】更に、本発明者らは、リン酸と難水溶性の塩を形成しうる金属カチオンをペントース−1−リン酸の塩として反応液中に存在させることにより、上記のリン酸と難水溶性の塩を形成しうる金属カチオンまたはその塩を添加した場合と同等の効果が得られることを見出した。【0010】本発明は本発明者等によるこれらの知見に基づいてなされたものである。【0011】 すなわち、本発明のヌクレオシドの製造方法は、水性反応媒体中で、ヌクレオシドホスホリラーゼ活性の存在下に、ペントース−1−リン酸と、核酸塩基または核酸塩基アナログとを反応させてヌクレオシド化合物を生成させる工程を有するヌクレオシド化合物の製造方法において、 該水性反応媒体中に、リン酸イオンと難水溶性の塩を形成しうる金属カチオンを存在させ、かつ リン酸と難水溶性の塩を形成しうる金属カチオンを、塩素イオン、硝酸イオン、炭酸イオン、硫酸イオンおよび酢酸イオンの中から選ばれる1種類以上のアニオンとの金属塩として水性反応媒体中に存在させることを特徴とする。【0012】この製造方法におけるペントース−1−リン酸としては、リボース−1−リン酸または2−デオキシリボース−1−リン酸が利用できる。【0013】リン酸と難水溶性の塩を形成しうる金属カチオンとしては、カルシウムイオン、バリウムイオン及びアルミニウムイオンの中から選ばれる1種類以上が利用できる。【0014】リン酸と難水溶性の塩を形成しうる金属カチオンは、塩素イオン、硝酸イオン、炭酸イオン、硫酸イオンおよび酢酸イオンの中から選ばれる1種類以上のアニオンとの金属塩として、水性反応媒体中に添加することができる。【0015】リン酸と難水溶性の塩を形成しうる金属カチオンは、ペントース−1−リン酸の塩として反応水性媒体中に存在させることができる。【0016】【発明の実施の形態】本発明におけるペントース−1−リン酸とは、ポリヒドロキシアルデヒドまたはポリヒドロキシケトンおよびその誘導体の1位にリン酸がエステル結合したもののことである。【0017】その代表例を挙げると、例えばリボース1−リン酸、2’−デオキシリボース1−リン酸、2’,3’−ジデオキシリボース1−リン酸、アラビノース1−リン酸などが挙げられるが、これらに限定されるものではない。【0018】ここでいうポリヒドロキシアルデヒドまたはポリヒドロキシケトンとは、天然物由来のものとしては、D−アラビノース、L−アラビノース、D−キシロース、L−リキソーズ、D−リボースのようなアルドペントース、D−キシルロース、L−キシルロース、D−リブロースのようなケトペントース、D−2−デオキシリボース、D−2,3−ジデオキシリボースのようなデオキシ糖類を挙げることができるが、これらに限定されるものではない。【0019】これらペントース−1−リン酸は、ヌクレオシドホスホリラーゼの作用によりヌクレオシド化合物の加リン酸分解反応を行って製造する方法(J. Biol. Chem. Vol. 184, 437, 1950)や、アノマー選択的な化学合成法等によっても調製することができる。【0020】本発明に用いられる核酸塩基及び核酸塩基アナログには、DNAやRNAの化合構造形式要素となっている窒素原子を含む複素環式化合物であり、ピリミジン、プリン及び核酸塩基アナログからなる群から選択された天然または非天然型の核酸塩基及び核酸塩基アナログが含まれる。【0021】それら核酸塩基及び核酸塩基アナログは、ハロゲン原子、アルキル基、ハロアルキル基、アルケニル基、ハロアルケニル基、アルキニル基、アミノ基、アルキルアミノ基、水酸基、ヒドロキシアミノ基、アミノオキシ基、アルコキシ基、メルカプト基、アルキルメルカプト基、アリール基、アリールオキシ基またはシアノ基によって置換されていてもよい。【0022】置換基としてのハロゲン原子としては、塩素、フッ素、ヨウ素、臭素が例示される。【0023】アルキル基としては、メチル基、エチル基、プロピル基などの炭素数1〜7のアルキル基が例示される。【0024】ハロアルキル基としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ブロモメチル、ブロモエチルなどの炭素数1〜7のアルキルを有するハロアルキル基が例示される。【0025】アルケニル基としては、ビニル、アリルなどの炭素数2〜7のアルケニル基が例示される。【0026】ハロアルケニル基としては、ブロモビニル、クロロビニルなどの炭素数2〜7のアルケニルを有するハロアルケニル基が例示される。【0027】アルキニル基としては、エチニル、プロピニルなどの炭素数2〜7のアルキニル基が例示される。【0028】アルキルアミノ基としては、メチルアミノ、エチルアミノなどの炭素数1〜7のアルキルを有するアルキルアミノ基が例示される。【0029】アルコキシ基としては、メトキシ、エトキシなどの炭素数1〜7のアルコキシ基が例示される。【0030】アルキルメルカプト基としては、メチルメルカプト、エチルメルカプトなどの炭素数1〜7のアルキルを有するアルキルメルカプト基が例示される。【0031】アリール基としては、フェニル基;メチルフェニル、エチルフェニルなどの炭素数1〜5のアルキルを有するアルキルフェニル基;メトキシフェニル、エトキシフェニルなどの炭素数1〜5のアルコキシを有するアルコキシフェニル基;ジメチルアミノフェニル、ジエチルアミノフェニルなどの炭素数1〜5のアルキルアミノを有するアルキルアミノフェニル基;クロロフェニル、ブロモフェニルなどのハロゲノフェニル基などが例示される。【0032】ピリミジンを具体的に例示すれば、シトシン、ウラシル、5−フルオロシトシン、5−フルオロウラシル、5−クロロシトシン、5−クロロウラシル、5−ブロモシトシン、5−ブロモウラシル、5−ヨ−ドシトシン、5−ヨ−ドウラシル、5−メチルシトシン、5−メチルウラシル(チミン)、5−エチルシトシン、5−エチルウラシル、5−フルオロメチルシトシン、5−フルオロウラシル、5−トリフルオロシトシン、5−トリフルオロウラシル、5−ビニルウラシル、5−ブロモビニルウラシル、5−クロロビニルウラシル、5−エチニルシトシン、5−エチニルウラシル、5−プロピニルウラシル、ピリミジン−2−オン、4−ヒドロキシアミノピリミジン−2−オン、4−アミノオキシピリミジン−2−オン、4−メトキシピリミジン−2−オン、4−アセトキシピリミジン−2−オン、4−フルオロピリミジン−2−オン、5−フルオロピリミジン−2−オンなどが挙げられる。【0033】プリンを具体的に例示すれば、プリン、6−アミノプリン(アデニン)、6−ヒドロキシプリン、6−フルオロプリン、6−クロロプリン、6−メチルアミノプリン、6−ジメチルアミノプリン、6−トリフルオロメチルアミノプリン、6−ベンゾイルアミノプリン、6−アセチルアミノプリン、6−ヒドロキシアミノプリン、6−アミノオキシプリン、6−メトキシプリン、6−アセトキシプリン、6−ベンゾイルオキシプリン、6−メチルプリン、6−エチルプリン、6−トリフルオロメチルプリン、6−フェニルプリン、6−メルカプトプリン、6−メチルメルカプトプリン、6−アミノプリン−1−オキシド、6−ヒドロキシプリン−1−オキシド、2−アミノ−6−ヒドロキシプリン(グアニン)、2,6−ジアミノプリン、2−アミノ−6−クロロプリン、2−アミノ−6−ヨ−ドプリン、2−アミノプリン、2−アミノ−6−メルカプトプリン、2−アミノ−6−メチルメルカプトプリン、2−アミノ−6−ヒドロキシアミノプリン、2−アミノ−6−メトキシプリン、2−アミノ−6−ベンゾイルオキシプリン、2−アミノ−6−アセトキシプリン、2−アミノ−6−メチルプリン、2−アミノ−6−サイクロプロピルアミノメチルプリン、2−アミノ−6−フェニルプリン、2−アミノ−8−ブロモプリン、6−シアノプリン、6−アミノ−2−クロロプリン(2−クロロアデニン)、6−アミノ−2−フルオロプリン(2−フルオロアデニン)などが挙げられる。【0034】核酸塩基アナログを具体的に例示すれば、6−アミノ−3−デアザプリン、6−アミノ−8−アザプリン、2−アミノ−6−ヒドロキシ−8−アザプリン、6−アミノ−7−デアザプリン、6−アミノ−1−デアザプリン、6−アミノ−2−アザプリンなどが挙げられる。【0035】本発明においてヌクレオシド化合物とは上述のポリヒドロキシアルデヒドまたはポリヒドロキシケトンおよびその誘導体の1位にピリミジン、プリン、あるいは核酸塩基アナログがN―グルコシド結合したものであり、具体的にはチミジン、デオキシシチジン、デオキシウリジン、デオキシグアノシン、デオキシアデノシン、ジデオキシアデノシン、トリフルオロチミジン、リバビリン、オロチジン、ウラシルアラビノシド、アデニンアラビノシド、2−メチル−アデニンアラビノシド、2−クロル−ヒポキサンチンアラビノシド、チオグアニンアラビノシド、2,6−ジアミノプリンアラビノシド、シトシンアラビノシド、グアニンアラビノシド、チミンアラビノシド、エノシタビン、ジェムシタビン、アジドチミジン、イドクスウリジン、ジデオキシアデノシン、ジデオキシイノシン、ジデオキシシチジン、ジデヒドロデオキシチミジン、チアジデオキシシチジン、ソリブジン、5−メチルウリジン、ビラゾール、チオイノシン、テガフール、ドキシフルリジン、ブレディニン、ネブラリン、アロプリノールウラシル、5−フルオロウラシル、2’−アミノウリジン、2’−アミノアデノシン、2’−アミノグアノシン、2−クロル−2’―アミノイノシンなどが挙げられる。【0036】本発明におけるヌクレオシドホスホリラーゼとは、リン酸存在下でヌクレオシド化合物のN−グリコシド結合を分解する酵素の総称であり、本発明においてはこの酵素活性を利用した反応の逆反応を利用することができる。反応に使用する酵素は、相当するペントース−1−リン酸と核酸塩基または核酸塩基アナログから目的とするヌクレオシド化合物を生成しうる活性を有していればいかなる種類及び起源のものでもかまわない。該酵素はプリン型とピリミジン型に大別されが、公知なものとしては例えば、プリン型としてプリンヌクレオシドホスホリラーゼ(EC2.4.2.1)、グアノシンホスホリラーゼ(EC2.4.2.15)、ピリミジン型としてピリミジンヌクレオシドホスホリラーゼ(EC2.4.2.2)、ウリジンホスホリラーゼ(EC2.4.2.3)、チミジンホスホリラーゼ(EC2.4.2.4)、デオキシウリジンホスホリラーゼ(EC2.4.2.23)などが挙げられる。【0037】本発明におけるヌクレオシドホスホリラーゼ活性は、該酵素活性を有する微生物を水性反応媒体中あるいは水性反応媒体に接触する状態で用いることで反応系に作用させることもできる。このような微生物は、プリンヌクレオシドホスホリラーゼ(EC2.4.2.1)、グアノシンホスホリラーゼ(EC2.4.2.15)、ピリミジンヌクレオシドホスホリラーゼ(EC2.4.2.2)、ウリジンホスホリラーゼ(EC2.4.2.3)、チミジンホスホリラーゼ(EC2.4.2.4)、デオキシウリジンホスホリラーゼ(EC2.4.2.23)からなる群から選択される一種類以上のヌクレオシドホスホリラーゼを発現している微生物であれば特に限定はされない。【0038】このような微生物の具体例としては、ノカルディア(Nocardia)属、ミクロバクテリウム(Microbacterium)属、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム属(Brevibacterium)属、セルロモナス(Cellulomonas)属、フラボバクテリウム(Flabobacterium)属、クルイヘラ(Kluyvere)属、ミコバクテリウム(Micobacterium)属、ヘモフィラス(Haemophilus)属、ミコプラナ(Micoplana)属、プロタミノバクター(Protaminobacter)属、キャンディダ(Candida)属、サッカロマイセス(Saccharomyces)属、バチルス(Bacillus)属、好熱性のバチルス属、シュードモナス(Pseudomonas)属、ミクロコッカス(Micrococcus)属、ハフニア(Hafnia)属、プロテウス(Proteus)属、ビブリオ(Vibrio)属、スタフィロコッカス(Staphyrococcus)属、プロピオニバクテリウム(Propionibacterium)属、ザルチナ(Sartina)属、プラノコッカス(Planococcus)属、エシェリシア(Escherichia)属、クルチア(Kurthia)属、ロドコッッカス(Rhodococcus)属、アシネトバクター(Acinetobacter)属、キサントバクター(Xanthobacter)属、ストレプトマイセス(Streptomyces)属、リゾビウム(Rhizobium)属、サルモネラ(Salmonella)属、クレブシエラ(Klebsiella)属、エンテロバクター(Enterobacter)属、エルウィニア(Erwinia)属、エアロモナス(Aeromonas)属、シトロバクター(Citrobacter)属、アクロモバクター(Achromobacter)属、アグロバクテリウム(Agrobacterium)属、アースロバクター属(Arthrobacter)属またはシュードノカルディア(Pseudonocardia)属に含まれる微生物株を好適な例として挙げることができる。【0039】近年の分子生物学および遺伝子工学の進歩により、上述の微生物株のヌクレオシドホスホリラーゼの分子生物学的な性質やアミノ酸配列等を解析することにより、該蛋白質の遺伝子を該微生物株より取得し、該遺伝子および発現に必要な制御領域が挿入された組換えプラスミドを構築し、これを任意の宿主に導入し、該蛋白質を発現させた遺伝子組換え菌を作出することが可能となり、かつ、比較的容易にもなった。かかる技術水準に鑑み、このようなヌクレオシドホスホリラーゼの遺伝子を任意の宿主に導入した遺伝子組換え菌も本発明のヌクレオシドホスホリラーゼを発現している微生物に包含されるものとする。【0040】ここでいう発現に必要な制御領域とは、プロモーター配列(転写を制御するオペレーター配列を含む)、リボゾーム結合配列(SD配列)、転写終結配列等を示している。プロモーター配列の具体例としては、大腸菌由来のトリプトファンオペロンのtrpプロモーター、ラクトースオペロンのlacプロモーター、ラムダファージ由来のPLプロモーター及びPRプロモーターや、枯草菌由来のグルコン酸合成酵素プロモーター(gnt)、アルカリプロテアーゼプロモーター(apr)、中性プロテアーゼプロモーター(npr)、α−アミラーゼプロモーター(amy)等が挙げられる。また、tacプロモーターのように独自に改変・設計された配列も利用できる。リボゾーム結合配列としては、大腸菌由来または枯草菌由来の配列が挙げられるが、大腸菌や枯草菌等の所望の宿主内で機能する配列であれば特に限定されるものではない。たとえば、16SリボゾームRNAの3’末端領域に相補的な配列が4塩基以上連続したコンセンサス配列をDNA合成により作成してこれを利用してもよい。転写終結配列は必ずしも必要ではないが、ρ因子非依存性のもの、例えばリポプロテインターミネーター、trpオペロンターミネーター等が利用できる。これら制御領域の組換えプラスミド上での配列順序は、5’末端側上流からプロモーター配列、リボゾーム結合配列、ヌクレオシドホスホリラーゼをコードする遺伝子、転写終結配列の順に並ぶことが望ましい。【0041】ここでいうプラスミドの具体例としては、大腸菌中での自律複製可能な領域を有しているpBR322、pUC18、Bluescript II SK(+)、pKK223−3、pSC101や、枯草菌中での自律複製可能な領域を有しているpUB110、pTZ4、pC194、ρ11、φ1、φ105等をベクターとして利用することができる。また、2種類以上の宿主内での自律複製が可能なプラスミドの例として、pHV14、TRp7、YEp7及びpBS7をベクターとして利用することができる。【0042】ここでいう任意の宿主には、後述の実施例のように大腸菌(Escherichia coli)が代表例として挙げられるが、とくに大腸菌に限定されるのものではなく枯草菌(Bacillus subtilis)等のバチルス属菌、酵母や放線菌等の他の微生物菌株も含まれる。【0043】本発明におけるヌクレオシドホスホリラーゼまたは、該酵素活性を有する微生物としては市販の酵素、該酵素活性を有する微生物菌体、及び菌体処理物またはそれらの固定化物などが使用できる。菌体処理物とは、例えばアセトン乾燥菌体や機械的破壊、超音波破砕、凍結融解処理、加圧減圧処理、浸透圧処理、自己消化、細胞壁分解処理、界面活性剤処理などにより調製した菌体破砕物などであり、また、必要に応じて硫安沈殿やアセトン沈殿、カラムクロマトグラフィーにより精製を重ねたものを用いても良い。【0044】本発明において、リン酸イオンと難水溶性の塩を形成しうる金属カチオンとは、反応において副生したリン酸イオンと難水溶性の塩を形成し、反応液中に沈殿しうるものであれば限定されない。そのようなものとして、カルシウム、マグネシウム、バリウム、鉄、コバルト、ニッケル、銅、銀、モリブデン、鉛、亜鉛、リチウムなどの金属カチオンが挙げられる。それらのうち工業的に汎用性や安全性が高く、反応に影響を与えない金属塩が特に好ましく、そのようなものの例としてカルシウムイオン、バリウムイオン、または、アルミニウムイオンが挙げられる。【0045】本発明において、リン酸イオンと難水溶性の塩を形成しうる金属カチオンは、リン酸と難水溶性の塩を形成しうる金属カチオンを、塩素イオン、硝酸イオン、炭酸イオン、硫酸イオン及び酢酸イオンの中から選ばれる1種類以上のアニオンとの金属塩として反応液中に添加することができる。具体的には、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、硫酸カルシウム、酢酸カルシウム、塩化バリウム、硝酸バリウム、炭酸バリウム、硫酸バリウム、酢酸バリウム、塩化アルミニウム、硝酸アルミニウム、炭酸アルミニウム、硫酸アルミニウム、酢酸アルミニウムなどが例示される。【0046】本発明における金属カチオンは、ペントース−1−リン酸の塩として反応液中に存在させてもよい。具体的には、リボース−1−リン酸・カルシウム塩、2−デオキシリボース−1−リン酸・カルシウム塩、2,3−ジデオキシリボース−1−リン酸・カルシウム塩、アラビノース−1−リン酸・カルシム塩、リボース−1−リン酸・バリウム塩、2−デオキシリボース−1−リン酸・バリウム塩、2,3−ジデオキシリボース−1−リン酸・バリウム塩、アラビノース−1−リン酸・バリウム塩、リボース−1−リン酸・アルミニウム塩、2−デオキシリボース−1−リン酸・アルミニウム塩、2,3−ジデオキシリボース−1−リン酸・アルミニウム塩、アラビノース−1−リン酸・アルミニウム塩、などが挙げられる。【0047】本発明の方法に用いる反応液を構成する水性反応媒体は、水を主体として構成される反応媒体で、本発明で目的とする酵素活性を利用した反応が進行し、リン酸イオンを金属カチオンと反応させて難溶性の塩として沈澱させることで反応系から取り除くことができるものであればよい。そのような水性反応媒体としては、水、あるいは水に低級アルコール、アセトン、ジメチルスルホキシドなどの水溶性の有機溶媒を添加した水性反応媒体が例示できる。水溶性有機溶媒を用いる場合における水に対する水溶性有機溶媒の配合比は、例えば0.1〜70重量%とすることができる。更に、反応の安定性を確保するために、水性反応媒体を用いた反応液は緩衝液として調製することもできる。この緩衝液としては本発明にかかる酵素反応用として利用できる公知の緩衝液を用いることができる。【0048】本発明におけるヌクレオシド化合物の合成反応においては、目的とするヌクレオシド化合物、基質であるペントース−1−リン酸と核酸塩基または核酸塩基アナログ、反応触媒であるヌクレオシドホスホリラーゼまたは該酵素活性を有する微生物あるいは該微生物からの各種調製物、そしてリン酸を反応系より除外させるための金属塩の種類とその特性により、適切なpHや温度などの反応条件を選べばよいが、通常はpH5〜10、温度10〜60℃の範囲で行うことができる。pHに関して、その管理幅を外れた場合、目的物や基質の安定性、酵素活性の低下、リン酸との難水溶性塩の未形成などが原因で反応転化率の低下を招く可能性がある。反応途中、pHの変化が生じるようであれば必要に応じて塩酸、硫酸などの酸や水酸化ナトリウム、水酸化カリウムなどのアルカリを適時添加すればよい。反応に使用するペントース−1−リン酸と、核酸塩基もしくは核酸塩基アナログの濃度は0.1〜1000mM程度が適当であり、両者のモル比は添加する核酸塩基もしくは核酸塩基アナログの比率をペントース−1−リン酸またはその塩に対して0.1〜10倍モル量で行える。反応転化率を考えれば0.95倍モル量以下が好ましい。核酸塩基もしくは核酸塩基アナログとして、2種以上のものを混合して用いる場合は、用いたもの総量について上記の濃度及びモル比を採用することができる。【0049】また、添加するリン酸と難水溶性の塩を形成しうる金属カチオンは、反応に使用するペントース−1−リン酸に対して0.1〜10倍モル量、より好ましくは0.5〜5倍モル量添加するのが良い。なお、高濃度の反応においては、基質の核酸塩基もしくは核酸塩基アナログや生成物のヌクレオシド化合物が溶解しきれずに反応液中に存在する場合もあるが、このような場合にも本発明は適用される。金属カチオンとして、2種以上のものを混合して用いる場合は、用いたもの総量について上記のモル比を採用することができる。【0050】このようにして製造したヌクレオシド化合物を反応液から単離するには、濃縮、晶析、溶解、電気透析処理、イオン交換樹脂や活性炭による吸脱着処理などの常法が適用できる。【0051】【実施例】以下に実施例及び比較例を挙げて本発明を説明するが、本発明はこれら実施例等によって何等制限されるものではない。【0052】分析法生成したヌクレオシド化合物はすべて高速液体クロマトグラフィーにより定量した。分析条件は以下による。カラム;YMC−Pack ODS−A312 150×6.0mmI.D.(YMC Co.,Ltd)カラム温度;40℃ポンプ流速;0.75ml/min検出;UV260nm、溶離液;10mMリン酸:アセトニトリル=95:5(V/V)実施例12.5mMの2’−デオキシリボース1−リン酸ジ(モノシクロヘキシルアンモニウム)塩(SIGMA製)、2.5mMのアデニン(和光純薬製、特級)、12units/mlのプリンヌクレオシドホスホリラーゼ(フナコシ製)、10mMの塩化カルシウム(和光純薬、特級)、10mMトリス塩酸緩衝液(pH7.4)から成る反応液1mlを30℃、24時間反応させた。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.40mMのデオキシアデノシンが生成していた。その時の反応収率は96.0%であった。【0053】比較例1塩化カルシウムを添加しないこと以外はすべて実施例1と同じ手順と条件で反応を行った。反応終了後、沈殿物は生成しなかった。反応液を希釈した後分析したところ、2.01mMのデオキシアデノシンが生成していた。その時の反応収率は80.4%であった。【0054】実施例2塩化カルシウム濃度を2.5mMにする以外はすべて実施例1と同じ手順と条件で反応を行った。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.27mMのデオキシアデノシンが生成していた。その時の反応収率は90.8%であった。【0055】実施例3塩化カルシウムの代わりに塩化アルミニウムを添加する以外はすべて実施例1と同じ手順と条件で反応を行った。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.31mMのデオキシアデノシンが生成していた。その時の反応収率は93.3%であった。【0056】実施例4塩化カルシウムの代わりに塩化バリウムを添加する以外はすべて実施例1と同じ手順と条件で反応を行った。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.31mMのデオキシアデノシンが生成していた。その時の反応収率は92.4%であった。【0057】実施例5塩化バリウム濃度を2.5mMにする以外はすべて実施例4と同じ手順と条件で反応を行った。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.27mMのデオキシアデノシンが生成していた。その時の反応収率は90.2%であった。【0058】実施例6Journal of Biologcal Chemistry、Vol. 184、 pp449-459、 1950記載の方法により2−デオキシリボース1−リン酸バリウム塩を調製した。2.5mMの2−デオキシリボース−1−リン酸バリウム塩、2.5mMのアデニン(和光純薬製、特級)、12units/mlのプリンヌクレオシドホスホリラーゼ(フナコシ製)、10mMの塩化カルシウム(和光純薬、特級)、10mMトリス塩酸緩衝液(pH7.4)から成る反応液1mlを30℃、24時間反応させた。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.40mMのデオキシアデノシンが生成していた。その時の反応収率は91.1%であった。【0059】実施例72.5mMの2−デオキシリボース−1−リン酸ジ(モノシクロヘキシルアンモニウム)塩(SIGMA製)、2.5mMのチミン(和光純薬製、特級)、12units/mlのチミジンホスホリラーゼ(SIGMA製)、10mMの硝酸カルシウム(和光純薬、特級)、10mMトリス塩酸緩衝液(pH7.4)から成る反応液1mlを30℃、24時間反応させた。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、2.28mMのチミジンが生成していた。その時の反応収率は91.2%であった。【0060】比較例2硝酸カルシウムを添加しないこと以外はすべて実施例7と同じ手順と条件で反応を行った。反応終了後、沈殿物は生成しなかった。反応液を希釈した後分析したところ、1.88mMのチミジンが生成していた。その時の反応収率は75.2%であった。【0061】実施例82.5mMのリボース−1−リン酸シクロヘキシルアンモニウム塩(SIGMA製)、2.5mMの2,6−ジアミノプリン(アルドリッチ製)、12units/mlのプリンヌクレオシドホスホリラーゼ(フナコシ製)、10mMの塩化カルシウム(和光純薬、特級)、10mMトリス塩酸緩衝液(pH7.4)から成る反応液1mlを30℃、24時間反応させた。反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、1.94mMの2,6−ジアミノプリンリボシドが生成していた。その時の反応収率は77.6%であった。【0062】比較例3塩化カルシウムを添加しないこと以外はすべて実施例8と同じ手順と条件で反応を行った。反応終了後、沈殿物は生成しなかった。反応液を希釈した後分析したところ、1.54mMの2,6−ジアミノプリンリボシドが生成していた。その時の反応収率は61.6%であった。【0063】実施例9大腸菌染色体DNAを次のようにして調製した。【0064】エシェリヒア・コリK−12/XL−10株(Stratagene社)を50mlのLB培地に接種し、37℃で一夜培養した後集菌し、リゾチーム1mg/mlを含む溶菌液で溶菌した。溶菌液をフェノール処理した後、通常の方法によりエタノール沈殿によりDNAを沈殿させた。生じたDNAの沈殿は、ガラス棒に巻き付けて回収した後、洗浄し、PCRに用いた。【0065】PCR用のプライマーには、エシェリヒア・コリの既知のdeoD遺伝子の塩基配列(GenBank accession No. AE000508(コード領域は塩基番号11531-12250)に基づいて設計した配列番号:1及び2に示す塩基配列を有するオリゴヌクレオチド(北海道システム・サイエンス株式会社)に委託して合成した)を用いた。これらのプライマーは、5’末端付近及び3’末端付近には、それぞれEcoRI及びHindIIIの制限酵素認識配列を有する。【0066】制限酵素HindIIIで完全に消化した前記大腸菌染色体DNA 6ng/μl及びプライマー各3μMを含む0.1mlのPCR反応液を用いて、変性:96℃、1分間、アニーリング:55℃、1分間、伸長反応:74℃、1分間からなる反応サイクルを、30サイクルの条件でPCRを行なった。【0067】上記反応産物及びプラスミドpUC18(宝酒造(株))を、EcoRI及びHindIIIで消化し、ライゲーション・ハイ(東洋紡(株))を用いて連結した後、得られた組換えプラスミドを用いて、エシェリヒア・コリDH5αを形質転換した。形質転換株を、アンピシリン(Am)50μg/ml及びX−Gal(5−ブロモ−4−クロロ−3−インドリル−β−D−ガラクトシド)を含むLB寒天培地で培養し、Am耐性で且つ白色コロニーとなった形質転換株を得た。【0068】このようにして得られた形質転換株よりプラスミドを抽出し、目的のDNA断片が挿入されたプラスミドを、pUC−PNP73と命名した。こうして得られた形質転換体を、エシェリヒア・コリ MT−10905と名づけた。【0069】エシェリヒア・コリ MT−10905株をアンピシリン50μg/mlを含むLB培地100mLで37℃・1晩振とう培養した。得られた培養液を13000rpmで10min遠心分離し、菌体を集めた。菌体を10mMトリス塩酸緩衝液(pH8.0)10mLに懸濁し、超音波により破砕したものを酵素源として用いた。【0070】10mMの2’−デオキシリボース1−リン酸ジ(モノシクロヘキシルアンモニウム)塩(SIGMA製)、10mMのアデニン(和光純薬製、特級)、20mMの塩化カルシウム、100mMのトリス塩酸緩衝液(pH8.0)、20units/mlの上述のプリンヌクレオシドホスホリラーゼからなる反応液1.0mlを50℃で20時間反応させた。【0071】反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、9.6mMのデオキシアデノシンが生成していた。その時の反応収率は96.0%であった。【0072】比較例4塩化カルシウムを添加しないこと以外はすべて実施例9と同じ手順と条件で反応を行った。反応終了後、沈殿物は生成しなかった。反応液を希釈した後分析したところ、7.9mMのデオキシアデノシンが生成していた。その時の反応収率は79%であった。【0073】実施例1010mMの2’−デオキシリボース1−リン酸ジ(モノシクロヘキシルアンモニウム)塩(SIGMA製)、10mMのグアニン(和光純薬製、特級)、20mMの塩化カルシウム、100mMのトリス塩酸緩衝液(pH8.0)、20units/mlの実施例9で調整したプリンヌクレオシドホスホリラーゼからなる反応液1.0mlを50℃で20時間反応させた。【0074】反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、8.0mMのデオキシグアノシンが生成していた。その時の反応収率は80.0%であった。【0075】比較例5塩化カルシウムを添加しないこと以外はすべて実施例10と同じ手順と条件で反応を行った。反応終了後、沈殿物は生成しなかった。反応液を希釈した後分析したところ、5.1mMのデオキシグアノシンが生成していた。その時の反応収率は51%であった。【0076】実施例1110mMの2’−デオキシリボース1−リン酸ジ(モノシクロヘキシルアンモニウム)塩(SIGMA製)、10mMのチミン(和光純薬製、特級)、20mMの塩化カルシウム、100mMのトリス塩酸緩衝液(pH8.0)、20units/mlのチミジンホスホリラーゼ(SIGMA製)からなる反応液1.0mlを50℃で20時間反応させた。【0077】反応終了後、白色の沈殿物が生成していた。反応液を希釈した後分析したところ、9.0mMのチミジンが生成していた。その時の反応収率は90.0%であった。【0078】比較例6塩化カルシウムを添加しないこと以外はすべて実施例11と同じ手順と条件で反応を行った。反応終了後、沈殿物は生成しなかった。反応液を希釈した後分析したところ、7.0mMのデオキシグアノシンが生成していた。その時の反応収率は70%であった。【0079】【発明の効果】本発明によれば、ヌクレオシドホスホリラーゼまたは該酵素活性を有する微生物を用いたペントース−1−リン酸と核酸塩基からのヌクレオシド化合物の製造において、リン酸と難水溶性塩を形成しうる金属塩を添加することで副生するリン酸が反応系から除外され、従来技術では達成されなかった反応収率の向上が達成される。工業的見地から本発明は大きなコストダウンに繋がり、その意義は大きい。【0080】【配列表】 水性反応媒体中で、ヌクレオシドホスホリラーゼ活性の存在下に、ペントース−1−リン酸と、核酸塩基または核酸塩基アナログとを反応させてヌクレオシド化合物を生成させる工程を有するヌクレオシド化合物の製造方法において、 該水性反応媒体中に、リン酸イオンと難水溶性の塩を形成しうる金属カチオンを存在させ、かつ リン酸と難水溶性の塩を形成しうる金属カチオンを、塩素イオン、硝酸イオン、炭酸イオン、硫酸イオンおよび酢酸イオンの中から選ばれる1種類以上のアニオンとの金属塩として水性反応媒体中に存在させることを特徴とするヌクレオシド化合物の製造方法。 ペントース−1−リン酸が、リボース−1−リン酸または2−デオキシリボース−1−リン酸である請求項1に記載のヌクレオシド化合物の製造方法。 リン酸と難水溶性の塩を形成しうる金属カチオンが、カルシウムイオン、バリウムイオン及びアルミニウムイオンの中から選ばれる1種類以上である請求項1または請求項2に記載のヌクレオシド化合物の製造方法。