生命科学関連特許情報

タイトル:特許公報(B2)_自然形質転換能を有する納豆菌
出願番号:1999180804
年次:2008
IPC分類:C12N 15/09,C12N 1/15,C12R 1/125


特許情報キャッシュ

河村 富士夫 JP 4085523 特許公報(B2) 20080229 1999180804 19990625 自然形質転換能を有する納豆菌 味の素株式会社 000000066 遠山 勉 100089244 松倉 秀実 100090516 川口 嘉之 100100549 河村 富士夫 20080514 C12N 15/09 20060101AFI20080417BHJP C12N 1/15 20060101ALI20080417BHJP C12R 1/125 20060101ALN20080417BHJP JPC12N15/00 AC12N1/15C12N1/15C12R1:125 C12N 15/00-90 BIOSIS/MEDLINE/WPIDS(STN) GenBank/EMBL/DDBJ/GeneSeq SwissProt/PIR/Geneseq PubMed JMEDPlus(JDream2) JSTPlus(JDream2) 特開平1−215280(JP,A) 5 2001008686 20010116 13 20040824 福間 信子 【0001】【発明の属する技術分野】本発明は、自然形質転換可能を獲得したバチルス属細菌に関し、詳しくは、野生株が自然形質転換能を有しないバチルス属細菌の変異株又は組換え株であって、自然形質転換能を有するバチルス属細菌に関する。【0002】【従来の技術】枯草菌(バチルス・サブチリス)をはじめとするバチルス属細菌は、菌体外酵素の生産菌として工業的に利用されているばかりでなく、納豆菌(Bacillus subtilis natto)のように食品生産にも古くから用いられているものもある。また、近年では、バチルス属細菌の強い分泌生産能に着目し、大腸菌や酵母と並んで、遺伝子組換えの宿主として利用されている。【0003】バチルス・サブチリスの形質転換法として、自然形質転換法(コンピテントセル法)、プロトプラスト法、エレクトロポレーション法が主として用いられている。これらの方法のうち、自然形質転換法は、比較的大きなDNA分子を導入することができる利点があるが、自然形質転換はバチルス・サブチリス マーブルグ(Marburg)系の菌株(168、166、160株)のみで起こり、納豆菌等では自然形質転換の頻度は極めて低く、形質転換能(コンピテンシー)を有しないともいわれている。また、プロトプラスト法及びエレクトロポレーション法は、多くの菌種に応用可能である一方、プロトプラスト法ではプロトプラストが不安定でありバーストしやすい、再現性が低い、さらにはプロトプラストの再生に完全培地を用いるため栄養要求マーカーを使用できない等の欠点がある。さらに、エレクトロポレーション法は、形質転換効率が低いという問題がある(以上、Molecular Biological Method for Bacillus, Edited by Harwood, C. R. et al., John Wiley & Sons, p.98-103)。【0004】バチルス・サブチリス マーブルグ株では、コンピテンスは、早期コンピテンス遺伝子群及び後期コンピテンス遺伝子群によって誘導されることが知られている(Solomon, J. M., et al., Genes & Development, 10, 2014-2024 (1996), Lazazzera, B. A., et al., Genes & Development, 19, 455-458 (1997), Dubnau, D., Gene, 192, 191-198 (1997))。後期コンピテンス遺伝子群の発現には、早期コンピテンス遺伝子であるcomK産物(ComK)が必要である。comK遺伝子は構成的に発現するが、通常の生育条件では、ComKタンパク質は同じく早期コンピテンス遺伝子であるmec(medium independent competence)A、mecB(clpC)、clpPの各遺伝子産物によって分解されるため、後期コンピテンス遺伝子群は発現しない。一方、コンピテンスが誘導する条件で培養すると、comK遺伝子の発現が促進されるため、活性型comKが後期コンピテンス遺伝子群の発現を誘導する。その結果、コンピテンスが誘導される。【0005】しかし、納豆菌等の自然形質転換能を有しないバチルス属細菌が同様のコンピテンス遺伝子群を有しているか、有していたとしても発現可能であるかについては知られていない。【0006】【発明が解決しようとする課題】本発明は、上記観点からなされたものであり、納豆菌等の、野生株が実質的に自然形質転換能を有しないバチルス属細菌の形質転換を可能にする技術を提供することを課題とする。【0007】【課題を解決するための手段】本発明者は、上記課題を解決するために鋭意研究を行った結果、納豆菌ではComKタンパク質が活性化されていないために後期コンピテンス遺伝子が誘導されず、その結果、自然形質転換能を有しないことを見い出した。そして、納豆菌のmecA遺伝子又はmecB遺伝子を破壊したところ、自然形質転換能を獲得した納豆菌を構築することに成功し、本発明を完成するに至った。すなわち本発明は、以下のとおりである。【0008】(1)野生株が実質的に自然形質転換能を有しないバチルス属細菌の変異株又は組換え株であって、後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得したバチルス属細菌。(2)バチルス・サブチリス(Bacillus subtilis)である(1)の細菌。(3)納豆菌(Bacillus subtilis natto)である(2)の細菌。(4)前記後期コンピテンス遺伝子群が、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる(1)の細菌。(5)活性型ComKタンパク質を保持する(1)の細菌。(6)comK遺伝子の発現が強化されたことにより活性型ComKタンパク質を保持する請求項5記載の細菌。(7)mecA遺伝子又はmecB遺伝子の一方又は両方が破壊されたことにより活性型ComKタンパク質を保持する(5)の細菌。(8)実質的に自然形質転換能を有しないバチルス属細菌に後期コンピテンス遺伝子の発現能を付与することを特徴とするバチルス属細菌に自然形質転換能を付与する方法。【0009】尚、本発明において、自然形質転換とは、特定の条件に培養した細菌の培養液にDNAを加えて培養したときに、該DNAが細菌細胞に取り込まれて保持されることをいう。「実質的に自然形質転換能を有しない」とは、薬剤耐性等の表現形質の発現頻度が、該表現形質に相当する遺伝子を含むDNAを用いて形質転換を行った場合と、自然突然変異とで有意差がないことをいう。また、自然形質転換能を付与するとは、自然形質転換能を有しない細菌に自然形質転換能を付与すること、及び、非常に低い自然形質転換能を有する細菌において自然形質転換能を高めることをいう。【0010】【発明の実施の形態】以下、本発明を詳細に説明する。本発明の細菌は、野生株が実質的に自然形質転換能を有しないバチルス属細菌の変異株又は組換え株であって、後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得したバチルス属細菌である。【0011】バチルス属細菌としては、バチルス・サブチリス(Bacillus subtilis)、バチルス・ステアロサーモフィルス(Bacillus stearothermophilus)、バチルス・メタノリカス(Bacillus methanolicus)、バチルス・アミロリケファシエンス(Bacillus amiloliquefaciens)、具体的には納豆菌(Bacillus subtilis natto)が挙げられる。バチルス属細菌で自然形質転換が起こるのはバチルス・サブチリス マーブルグ(Marburg)系の菌株のみであるといわれており、それらの菌株以外のバチルス属細菌は、本発明を適用して自然形質転換能を付与し得る。また、マーブルグ系の菌株であっても、同様にして自然形質転換能を向上させ得る。【0012】マーブルグ系の菌株は、特定の培養条件で培養すると、コンピテンス遺伝子群が誘導され自然形質転換能が発現するが、納豆菌のような自然形質転換能を有しないバチルス属細菌(以下、単に「納豆菌等」ともいう)は、そのような条件で培養しても、後期コンピテンス遺伝群の発現が誘導されない。したがって、後期コンピテンス遺伝子群の発現を可能にすることによって、納豆菌等に自然形質転換能を付与することができる。【0013】後期コンピテンス遺伝子群の発現を可能にするには、納豆菌等が元来保持する後期コンピテンス遺伝子群が発現するように発現制御系を改変するか、発現可能な後期コンピテンス遺伝子群を納豆菌等に導入すればよい。具体的には、例えば、活性型ComKタンパク質を後期コンピテンス遺伝子群の発現を誘導するような量で細胞内に保持させればよい。活性型ComKタンパク質を細胞内に保持させるには、comK遺伝子の発現量を増大させるか、あるいはmecA遺伝子又はmecB遺伝子を破壊又は変異させ、MecAタンパク質又はMecBタンパク質が正常に機能しないようにすればよい。mecA遺伝子又はmecB遺伝子の破壊は、いずれか一方でもよく、両方であってもよい。【0014】mecA遺伝子又はmecB遺伝子の破壊は、内部に他のDNA配列を挿入したmecA遺伝子又はmecB遺伝子、あるいは内部を欠失したmecA遺伝子又はmecB遺伝子を含むDNA断片を、納豆菌等の培養液に加えて培養することにより納豆菌等細胞を形質転換し、染色体上のmecA遺伝子又はmecB遺伝子と相同組換えを起こさせることにより、行うことができる。【0015】バチルス・サブチリスのmecA遺伝子(Genbank/EMBL/DDBJ accetion No. L06059)又はmecB遺伝子(Genbank/EMBL/DDBJ accetion No. U02604)は、それらの塩基配列が報告されており、該塩基配列に基づいて合成したオリゴヌクレオチドをプライマーとするポリメラーゼチェインリアクション法(PCR:polymerase chain reaction; White,T.J. et al., Trends Genet., 5,185 (1989)参照)により、バチルス属細菌染色体DNAから単離することができる。【0016】納豆菌等の形質転換は、枯草菌で通常用いられている自然形質転換法(コンピテントセル法)(J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958))と同様にして、特定の条件に培養した細胞の培養液にDNAを加えて培養することにより、行うことができる。納豆菌等は、対数増殖期から定常期へと移行する時期の生育フェーズにおいて形質転換能が高まる。具体的には例えば、形質転換は次のようにして行うことができる。すなわち、納豆菌等を、実施例に示すコンピテンス誘導培地にOD660が0.05前後となるように植菌し、37℃で5時間振盪培養を行った後、菌体をコンピテンス誘導培地に懸濁し、この細胞懸濁液にDNAを加え、さらに37℃で1.5時間振盪培養した後、LB液体培地を加え、37℃で1時間浸透培養を続け、その後、LB寒天培地に塗布し、37℃で一晩培養する。【0017】形質転換株の選択は、導入しようとするDNAに薬剤耐性遺伝子等のマーカーを保持させ、形質転換処理後の細胞のマーカー形質を指標として行うことができる。マーカー遺伝子を内部に含むmecA遺伝子又はmecB遺伝子は、これらの遺伝子の破壊に好適に用いることができる。このようなマーカー遺伝子を内部に含むmecA遺伝子又はmecB遺伝子を保持するバチルス・ズブチリスとして、mecA欠損株BD2123[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)]、及びmecB欠損株BD2243[hisB2 leu-8 metB5 mecBΔ(spc) amyE::comG-lacZ(cat)](Dubnau, D., Gene, 192, 191-198 (1997)参照)が挙げられる。これらの菌株の染色体DNA断片は、そのままmecA遺伝子又はmecB遺伝子の破壊に用いることができる。【0018】形質転換が起こったことは、形質転換株からDNAを調製し、同DNAでバチルス・ズブチリス マーブルグ系の菌株を形質転換し、マーカー遺伝子を保持する形質転換体を得ることにより、確認することができる。【0019】また、上記のようにして得られるmecA欠損株又はmecB欠損株が、活性型ComKタンパク質を細胞内に保持し、後期コンピテンス遺伝子群が発現可能であることは、後期コンピテンス遺伝子群のオペロンのプロモーターにβ−ガラクトシダーゼ遺伝子等のレポーター遺伝子を連結した融合遺伝子をmecA欠損株又はmecB欠損株に保持させ、これらの株のβ−ガラクトシダーゼ活性が発現することにより、確認することができる。前記融合遺伝子としては、例えば、BD2123株[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)](Liyun Kong and David Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793-5797 (1994))が染色体DNA上に保持する、バチルス・ズブチリスcomG遺伝子の転写調節領域とエシェリヒア・コリK12株由来のβ−ガラクトシダーゼをコードするlacZ遺伝子との融合遺伝子(PcomG-lacZ)が挙げられる。【0020】また、後期コンピテンス遺伝子群のオペロンのプロモーターを、発現にComKタンパク質を必要としないプロモーターに置換した融合遺伝子を作製し、同融合遺伝子を納豆菌等に導入することによっても、自然形質転換能を付与することができる。また、納豆菌等の染色体上の後期コンピテンス遺伝子群のオペロンのプロモーターを、発現にComKタンパク質を必要としないプロモーターに置換することによっても、自然形質転換能を付与することができる。染色体上の遺伝子のプロモーターを置換する技術は、特開平1−215280号公報に開示されている。【0021】後期コンピテンス遺伝子群としては、comC遺伝子、comEオペロン、comFオペロン又はcomGオペロンから選ばれる1種又は2種以上が挙げられる。【0022】【実施例】以下、本発明を実施例によりさらに具体的に説明する。<1>納豆菌の単離タカノフーズ株式会社の納豆(「おかめ納豆」(同社の登録商標))より納豆菌を分離した。前記納豆の希釈液をLB寒天培地に塗布して単一コロニー分離を行い、2種の納豆菌を単離した。1種は非常にラフなコロニーを形成し、バチルス・サブチリス ナットウ(Bacillus subtilis natto) OK1と命名し、他の1種はバチルス・サブチリス マーブルグ168に似たコロニーを形成し、バチルス・サブチリス ナットウ OK2と命名した。これらの株は、数十kb(70kb以下)と約6kbの2つのプラスミドを保持し、その生育にビオチン(ビタミンH)を要求した。【0023】<2>PcomG-lacZ融合遺伝子をもつバチルス・サブチリスOK2株の構築comG遺伝子の転写調節領域とエシェリヒア・コリK12株由来のβ−ガラクトシダーゼをコードするlacZ遺伝子との融合遺伝子(PcomG-lacZ)及びクロラムフェニコールアセチルトランスフェラーゼ遺伝子がアミラーゼ遺伝子(amyE)に挿入されたDNA断片(amyE::comG-lacZ(cat)が、バチルス・サブチリス168系統株の染色体上のamyE領域に挿入されたBD2123株[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)](Liyun Kong and David Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793-5797 (1994))から染色体DNAを、斎藤、三浦の方法(Biochem. Biophys. Acta., 72, 619 (1963))で抽出し、得られたDNAを用いて通常の形質転換法(J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958))により、バチルス・サブチリス168株に導入した。【0024】目的とする融合遺伝子を含むDNA断片がamyE遺伝子間に挿入された株は、クロラムフェニコールを5μg/ml含むLB寒天培地(Luria-Bertani培地: Sambrook, J., Fritsch, E. F., and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989))に塗布し、出現したコロニーを選択することによって得た。【0025】さらに、OK2株に、上記PcomG-lacZ融合遺伝子を導入した株を構築した。上記で得られたPcomG-lacZ融合遺伝子を持つバチルス・サブチリス168株の染色体DNAを前記と同様にして抽出した。一方、OK2株を0.1μg/mlのビオチンを加えたコンピテンス誘導培地[CI液体培地:Spizizen最少培地(J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958)に0.05% Yeast Extract (Difco)及び0.1μg/mlのビオチンを加えた培地]にOD660が0.05前後となるように植菌し、37℃で5時間振盪培養を行った後、0.5mlの培養液を分取し、8000rpm、4℃で2分遠心分離して集菌し、1mlのCI培地[Spizizen最少培地に0.025% Yeast Extract (Difco)及び0.1μg/mlのビオチンを加えた培地]に懸濁した。この細胞懸濁液0.1mlに、前記のPcomG-lacZ融合遺伝子を持つバチルス・サブチリス168株の染色体DNA0.2μgを加え、さらに37℃で1.5時間振盪培養した後、0.3mlのLB液体培地を加え、37℃で1時間浸透培養を続け、5μg/mlのクロラムフェニコールを含むLB寒天培地に塗布し、37℃で一晩培養した。その結果、2つのコロニーを得た。【0026】上記の2株を用いて、CI培地中での後記コンピテンス遺伝子の発現をlacZ活性(β−ガラクトシダーゼ活性)をレポーターとして調べたところ、全く発現が認められなかった。このことは、これらの形質転換株に、完全なPcomG-lacZ融合遺伝子が導入されていないか、納豆菌では後記コンピテンス遺伝子の誘導系に何らかの欠陥があるものと考えられた。このことを確かめるために、上記形質転換体から抽出したDNAでバチルス・サブチリス168株を通常の形質転換法により形質転換し、得られたCmrの形質転換株をCI培地で培養し、lacZ活性を調べた。その結果、Cmr株のすべて(50株中の50株)においてPcomG-lacZの発現がみられた。以上のことから、OK2株に導入されたPcomG-lacZ融合遺伝子は目的通りの構造を有していることが確認され、後記コンピテンス遺伝子の誘導系に欠陥があることが示唆された。【0027】<3>mecA変異又はmecB変異の導入によるコンピテンス遺伝子の発現回復(1)amyE::comG-lacZ(cat)を持つバチルス・サブチリス168株へのmecA、mecB変異の導入上記でcomGオペロンが誘導されないのは、このオペロンの正の転写因子であるComKタンパク質が活性化されていないためではないかと考え、OK2株にバチルス・サブチリス168株のmecA変異及びmecB変異を導入した。バチルス・サブチリス168系統のmecA欠損株BD2123[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)]、及びmecB欠損株BD2243[hisB2 leu-8 metB5 mecBΔ(spc) amyE::comG-lacZ(cat)]よりDNAを抽出し、通常の形質転換法によりamyE::comG-lacZ(cat)を持つバチルス・サブチリス168(trpC2)株に導入した。BD2123株及びBD2243は、それぞれmecA遺伝子及びmecB遺伝子の内部にスペクチノマイシン耐性遺伝子が挿入されている。これらの変異株では、ComKタンパク質の分解が起こらず、構成的に後期コンピテンス遺伝子群が発現していることが報告されている(Dubnau, D., Gene, 192, 191-198 (1997))。【0028】上記のようにして、PcomG-lacZを持つmecA変異株バチルス・サブチリス[mecAΔ(spc)amyE::comG-lacZ]、及びPcomG-lacZを持つmecB変異株バチルス・サブチリス[mecBΔ(spc)amyE::comG-lacZ]を構築した。これらの形質転換株は、100μg/mlのスペクチノマイシンと5μg/mlのクロラムフェニコールを含むLB寒天培地上で選択し、かつX−gal[5−ブロモ−4−(クロロ−3−インドリル−β−D−ガラクトシド)]を100μg/ml含むLB寒天培地上で青色を呈する、すなわちPcomG-lacZ遺伝子が構成的に発現していることで、目的のDNAが導入されていることを確認した。【0029】(2)OK2株のmecA及びmecB欠損株の構築上記で得られたバチルス・サブチリス168株のmecA変異株[mecAΔ(spc)amyE::comG-lacZ]及びmecB変異株[mecBΔ(spc)amyE::comG-lacZ]よりDNAを調製し、<2>で構築したPcomG-lacZを持つOK2株に導入した。具体的には、<2>で述べたのと同様に形質転換を行った。尚、mecA変異株[mecAΔ(spc)amyE::comG-lacZ]由来のDNAは23μg/ml、及びmecB変異株[mecBΔ(spc)amyE::comG-lacZ]由来のDNAは43μg/mlのDNA溶液を、それぞれ細胞懸濁液0.1mlに対して3μl加えた。【0030】100μg/mlのスペクチノマイシンと5μg/mlのクロラムフェニコールを含むLB寒天培地に塗布することにより形質転換株の選択を行い、スペクチノマイシン及びクロラムフェニコール耐性(Spcr、Cmr)株を取得した。こうして、形質転換可能な納豆菌OK2 mecAΔ(spc)amyE::comG-lacZ及びOK2 mecBΔ(spc)amyE::comG-lacZを得た。形質転換株の出現頻度は、表1に示すとおりであった。【0031】【表1】【0032】(3)形質転換株のβ−ガラクトシダーゼ活性の測定168[amyE::comG-lacZ(cat)]及びOK2[amyE::comG-lacZ(cat)]は、5μg/mlのクロラムフェニコールを含むLB寒天培地で、また、OK2[mecAΔ(spc)amyE::comG-lacZ]及びOK2[mecBΔ(spc)amyE::comG-lacZ]は、5μg/mlのクロラムフェニコール及び100μg/mlのスペクチノマイシンを含むLB寒天培地で、それぞれ37℃で一晩培養し、ビオチン0.1μg/mlと5μg/mlのクロラムフェニコールを含むCI培地(mecA変異株及びmecB変異株はさらに50μg/mlのスペクチノマイシンを含む)5mlに、OD660が約0.1になるように植菌し、37℃で振盪培養した。培養開始から1時間毎にOD660を測定し、同時に15000rpm、2分間の遠心で集菌し、活性測定まで−30℃に保存した。0、1、2時間目は1ml、3、4、5、6、7時間目は0.5mlの培養液を分取した。【0033】上記のようにして集菌した細胞をZバッファー(60mM Na2HPO4, 40mM NaHPO4・2H2O, 10mM KCl, 1mM MgSO4・7H2O, 50mM 2-メルカプトエタノール)500μlに懸濁し、トルエンを4滴加え、20秒間ボルテックスし、28℃の恒温槽で2分間プレインキュベートし、反応液の温度を28℃とした。次に、基質として、分解されると黄色の生成物を生じるONPG(O−ニトロフェニル−β−D−ガラクトピラノシド)を4mg/ml含むZバッファーを200μl加えて混合し、28℃で反応を開始させた。薄く黄色く色づいたら、1Mの炭酸ナトリウム溶液を500μl加え、反応を停止させ、氷中に保存した。反応開始から停止までの時間をT(分)とする。尚、色づかなかったサンプルは、最大20分間28℃で反応させてから、反応を停止させた。反応溶液を15000rpm、4℃で5分遠心した後、上清をキュベットに移し、分光光度計でA420を測定した。β−ガラクトシダーゼ活性は、次のようにして算出した(Wang, P-Z and Doi, R.H., J. Biol. Chem., 259, 8619-8625 (1984))。結果を、図1に示す。図中、活性を縦軸に、サンプリングした時間を横軸に示す。【0034】【数1】活性(unit)=A420×1000/T(分)×OD660×V(ml)【0035】<4>形質転換可能な納豆菌の形質転換能の評価納豆菌自身の薬剤耐性マーカー遺伝子を得るために、納豆菌より自然突然変異によるリファンピシン耐性変異(rifr)株をまず単離し、OK2SR21株と命名した。このリファンピシン耐性変異が、RNAポリメラーゼβサブユニット遺伝子の変異であることは、30SリボゾームS12タンパク質遺伝子(rpsL)内のストレプトマイシン耐性変異(strA)との同時形質転換(co-transformation)頻度により確認した。【0036】バチルス・サブチリス168株のstrA47変異は、rpsL遺伝子内の変異であり、同株でたった一つのコドンの変異のみが知られている。また、rif1728は、168株のRNAポリメラーゼβサブユニット遺伝子内の変異であり、多くのrifrが同じ変異であることが知られている。OK2株で取得した自然突然変異(rifr)が、既知のこれらの遺伝子内の変異であるか否かを、互いにマッピングすることにより推定した。その結果、OK2で得られたrifr(rif21と命名した)はrpoBの変異であり、strAもrpsL(strA)の変異であることがわかった。【0037】OK2SR21株(rif21)及び168株のrifr株(rif1728)から調製したDNAを用いて、<3>で得た形質転換可能な納豆菌OK2 mecAΔ(spc)amyE::comG-lacZ株、OK2 mecBΔ(spc)amyE::comG-lacZ、及び168株を、通常の形質転換法により形質転換した。OK2SR21株由来のDNAは23μg/ml、168株のrifr株由来のDNAは43μg/mlのDNA溶液を、それぞれ細胞懸濁液0.1mlに対して3μl加えた。形質転換株の出現頻度は、表2に示すとおりであった。【0038】【表2】【0039】<5>OK2誘導株の制限・修飾系の有無の確認バチルス・サブチリスには多くの制限・修飾系が知られているので、プラスミドpUB110(カナマイシン耐性(Kmr)マーカーを含む)を用いて、OK2 mecAΔ(spc)amyE::comG-lacZ、OK2 mecBΔ(spc)amyE::comG-lacZの制限・修飾系の有無を調べた。【0040】168株を用いて増殖させたpUB110、及びOKSR21株由来のDNAを用いて、OK2 mecAΔ(spc)amyE::comG-lacZ株、OK2 mecBΔ(spc)amyE::comG-lacZ168株、OK2株、及び168株を、通常の形質転換法により形質転換した。結果を表3に示す。この結果から、納豆菌には、168株と異なる制限・修飾系は存在しないことがわかる。【0041】【表3】【0042】<6>comK遺伝子の発現強化によるコンピテンス遺伝子の発現回復枯草菌のファージSPO1の強力なプロモーター及びエシェリヒア・コリのlacプロモーターとの融合プロモーターであるPspac(Methods in Enzymology, vol.185, 185- (1990))を含むプラスミドpAG58をEcoRI及びBamHIで切断し、Pspacを含む断片を切り出した。バチルス属細菌のプラスミドpUB110をEcoRI及びBamHIで切断し、前記断片と連結し、プラスミドpULI7を得た(図2)。【0043】一方、バチルス・ズブチリス168株の染色体DNAを鋳型とし、配列番号1及び2に示す塩基配列を有し、末端にXbaIの認識配列を有するオリゴヌクレオチドをプライマーとするPCRにより、comK遺伝子を含むDNA断片を増幅した。この断片をXbaIで消化し、XbaIで消化したpUL17に連結し、プラスミドpULI7SK27を得た(図2)。同プラスミドは、Pspacの制御下で発現するcomK遺伝子を有しており、同遺伝子はIPTGにより誘導され得る。尚、上記の各プラスミドの構築は、バチルス・ズブチリス168株を用いて行った。【0044】OK2[amyE::comG-lacZ(cat)]を上記プラスミドpULI7SK27で形質転換した。形質転換株を、カナマイシン7.5μg/mlを含むLB培地で培養し、各種濃度のIPTGを添加してcomK遺伝子の誘導を行い、β−ガラクトシダーゼ活性を測定した。結果を図3に示す。また、同様にして培養した形質転換株を、OK2SR21株の染色体DNAで形質転換し、rifrを指標として形質転換効率を評価した。結果を表4に示す。この結果から、comK遺伝子の発現を増強することによって、納豆菌の形質転換能を示すことがわかる。【0045】【表4】【0046】【発明の効果】本発明により、納豆菌等の、野生株が実質的に自然形質転換能を有しないバチルス属細菌の形質転換を可能にすることができる。本発明によれば、自然突然変異に比べて有意に高い頻度で納豆菌等の形質転換を行うことが可能となるので、納豆菌等の分子育種に好適に利用することができる。【配列表】【0047】【0048】【0049】【図面の簡単な説明】【図1】 168[amyE::comG-lacZ(cat)]、OK2[amyE::comG-lacZ(cat)]、OK2[mecAΔ(spc)amyE::comG-lacZ]及びOK2[mecBΔ(spc)amyE::comG-lacZ]のβ−ガラクトシダーゼ活性を示す図。活性を縦軸に、サンプリングした時間を横軸に示す。【図2】 IPTGで発現が誘導されるcomK遺伝子を有するプラスミドpULI7SK27の構築過程を示す図。【図3】 IPTGで発現が誘導されるcomK遺伝子を有するプラスミドpULI7SK27を含む納豆菌形質転換体のβ−ガラクトスシダーゼ活性のIPTGによる誘導を示す図。 comK遺伝子の発現が強化され、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得した納豆菌(Bacillus subtilis natto)。 mecA遺伝子とmecB遺伝子の一方もしくは両方が破壊され、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得した納豆菌(Bacillus subtilis natto)。 活性型ComKタンパク質を保持する請求項1または2に記載の納豆菌。 comK遺伝子の発現を強化することにより、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子の発現能を納豆菌に付与することを特徴とする、納豆菌に自然形質転換能を付与する方法。 mecA遺伝子とmecB遺伝子の一方もしくは両方を破壊することにより、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子の発現能を納豆菌に付与することを特徴とする、納豆菌に自然形質転換能を付与する方法。


ページのトップへ戻る

生命科学データベース横断検索へ戻る