生命科学関連特許情報

タイトル:特許公報(B2)_静電容量センサ回路
出願番号:1998322831
年次:2008
IPC分類:H03K 17/955,G01N 27/22,G01V 3/08


特許情報キャッシュ

加藤 良智 篠原 正幸 瀬塚 武土 JP 4047466 特許公報(B2) 20071130 1998322831 19981028 静電容量センサ回路 ケイエステクノ株式会社 598078447 三浦 光康 100080838 加藤 良智 篠原 正幸 瀬塚 武土 20080213 H03K 17/955 20060101AFI20080124BHJP G01N 27/22 20060101ALI20080124BHJP G01V 3/08 20060101ALI20080124BHJP JPH03K17/955 GG01N27/22 DG01V3/08 D H03K 17/74-17/98 G01N 27/22 G01V 3/08 特開平08−327392(JP,A) 13 2000134078 20000512 15 20051020 柳下 勝幸 【0001】【発明の属する技術分野】 本発明は、静電容量センサ回路に関する。【0002】【従来の技術】 従来、2の検出電極の静電容量差を検出する静電容量センサ回路が日本国実用新案出願公告公報第63−36246号に開示されている。図10に示すように、この回路は、パルス信号発生回路と、可変抵抗と、第1可変遅延回路と、第2可変遅延回路と、位相弁別手段とを備え、検出電極は、第1可変遅延回路へ、また、基準電極は、第2可変遅延回路へ接続されている。【0003】 パルス信号発生回路から出力されたパルス信号は、可変抵抗を介して第1可変遅延回路と、第2可変遅延回路へ分枝される。両可変遅延回路は、検出領域に被検出物が存在する場合の検出電極とアース間の静電容量(以下、「検出電極静電容量」とする。)、基準電極とアース間の静電容量(以下、「基準電極静電容量」とする。)の大きさに応じ、入力されたパルス信号を遅延させ、比較手段である位相弁別手段へ各パルス信号を出力する。【0004】 位相弁別手段は、入力された各パルス信号の位相を比較し、その位相のずれが、所定しきい値以上である場合には、検出信号を出力する。尚、検出領域内に検出物が存在しない場合の検出電極とアース間の静電容量(以下、「検出電極基礎容量」とする。)と基準電極とアース間の静電容量(以下、「基準電極基礎容量」とする。)との相違は、可変抵抗を手動で調整していた。【0005】【発明が解決しようとする課題】 上記の静電容量センサ回路は、ノイズ等の影響により検出電極基礎容量、または、基準電極基礎容量の何れかが変動した場合、その両基礎容量の相違による遅延パルス信号の位相差が所定のしきい値以上であれば、検出領域内に被検出物が存在しない場合でも検出信号を出力する。即ち、誤動作する。【0006】 上記の検出電極基礎容量と基準電極基礎容量の相違による上記の誤動作を防止するためは、上記のしきい値を大きく設定すれば回避できる。しかし、しきい値を大きく設定すると、所定の電荷量を有する被検出物を検出する場合、その被検出物が、検出電極により接近あるいは接触しなければ検出することができなくなる。即ち、検出感度を低下させなければならないという問題点があった。【0007】 また、上記の静電容量センサ回路は、検出電極の領域内に、物体が接近し静止してしまうと、検出電極の電荷量は増大した状態のままであるため、他の物体が新たに検出領域内に侵入しても検出することができないという問題点があった。【0008】 本発明は、上記の静電容量センサ回路の問題点を解決し、検出電極基礎容量と基準電極基礎容量バランスが損なわれても誤動作等が発生せず、また、安定した感度と高い検出感度を維持することができる静電容量センサ回路を提供することを目的とする。【0009】【課題を解決するための手段】 請求項1記載の静電容量センサ回路は、パルス信号を発生するパルス信号発生回路と、該パルス信号を少なくとも2の検出電極の静電容量の変化に基づいてクロック信号、第1データ信号及び第2データ信号を形成する比較手段と、該第1データ信号のタイミングt2と該クロック信号のタイミングt1間の時間と、該クロック信号のタイミングt1と該第2データ信号のタイミングt3間の時間を制御する自動バランス調整手段と、該クロック信号と第1データ信号とを比較し、また、該クロック信号と第2データ信号を比較判断する判断手段とを有し、前記比較手段は、第1検出電極と接続されると共に前記クロック信号を形成する第1コンパレータと、第2検出電極と接続されると共に前記第1データ信号を形成する第2コンパレータと、前記第1データ信号を遅延して前記第2データ信号を形成する遅延回路とから成るというものである。【0010】 本発明に係る静電容量センサ回路は、2の検出電極の静電容量の変化に基づきクロック信号、第1データ信号及び第2データ信号を形成し、そのタイミング間の時間を制御することにより、2の検出電極の検出感度を所定の感度に維持することができる。【0011】 請求項2記載の静電容量センサ回路は、自動バランス手段が、第1データ信号のタイミングt2とクロック信号のタイミングt1間の時間と、クロック信号のタイミングt1と第2データ信号のタイミングt3間の時間を均等に制御するというものである。【0012】 本発明に係る静電容量センサ回路は、2の検出電極の検出感度を略均等な感度に維持することができる。また、外部から検出電極へ侵入するノイズは、2の検出電極に略均等に影響を与えるため、このノイズの影響を効率的に排除することができる。【0013】 請求項1記載の比較手段の具体的構成は、第1検出電極と接続されると共に前記クロック信号を形成する第1コンパレータと、第2検出電極と接続されると共に前記第1データ信号を形成する第2コンパレータと、第1データ信号を遅延して第2データ信号を形成する遅延回路とから成り、本願発明の特定要件として加味される。【0014】 請求項3記載の静電容量センサ回路は、自動バランス調整手段が、第2コンパレータの比較電圧を可変制御するというものである。【0015】 本発明に係る静電容量センサ回路は、自動バランス調整手段により第2コンパレータのみを制御するため、第1コンパレータを制御する必要がない。従って、回路構成を簡易にすると共に、制御を容易にし回路の作動信頼性を向上させることができる。【0016】 請求項4記載の静電容量センサ回路は、自動バランス調整手段が、CPUにより作動するD/A変換回路であるというものである。【0017】 本発明に係る静電容量センサ回路は、CPUにより作動するD/A変換回路を用いたため、自動バランス調整を精密に行うことができる。【0018】 請求項5記載の静電容量センサ回路は、判断手段が、クロック信号と第1データ信号を比較し、また、クロック信号と第2データ信号を比較した結果、何れか一方が所定時間以上無効検出状態にあると判断した場合には、自動バランス調整手段を作動させるというものである。【0019】 請求項6記載の静電容量センサ回路は、判断手段が、クロック信号と第1データ信号を比較し、また、クロック信号と第2データ信号を比較した結果、何れか一方が有効検出状態にあると判断した場合には、検出信号を出力するというものである。【0020】 請求項7記載の静電容量センサ回路は、判断手段が、検出信号を出力した後、クロック信号と第1データ信号を比較し、また、クロック信号と第2データ信号を比較した結果、何れか一方が所定時間以上有効検出状態にあると判断した場合には、自動バランス調整手段を作動させるというものである。【0021】 本発明に係る静電容量センサ回路は、検出電極の領域内に、物体が接近し静止している場合でも、自動バランス調整手段を作動させることにより、他の物体が新たに検出領域内に侵入したことを検出することができる。【0022】 請求項8記載の静電容量センサ回路は、判断手段が、クロック信号と第1データ信号を比較する第1フリップフロップ回路と、クロック信号と第2データ信号を比較する第2フリップフロップ回路と、第1フリップフロップ回路及び第2フリップフロップ回路の出力信号を判断するCPUから成るというものである。【0023】 請求項9記載の静電容量センサ回路は、遅延回路が、第2データ信号の遅延時間を可変制御することにより、自動感度調整を行うというものである。【0024】 請求項10記載の静電容量センサ回路は、判断手段が、クロック信号と第1データ信号を比較し、また、クロック信号と第2データ信号を比較した結果、何れもが無効検出状態にあると判断した場合には、遅延回路を作動させ検出感度を低下させるというものである。【0025】 請求項11記載の静電容量センサ回路は、遅延回路が、CPUにより選択される複数の時定数を有する積分回路から成るというものである。【0026】 請求項12記載の静電容量センサ回路は、判断手段が、静電容量センサ回路作動直後、自動バランス調整手段を作動させるというものである。【0027】 請求項13記載の静電容量センサ回路は、判断手段は、静電容量センサ回路作動直後、遅延回路を作動させ、検出感度が最も高い状態に設定するというものである。【0028】【発明の実施の形態】 本発明に係る静電容量センサ回路を図1を参照しつつ説明する。本回路は、入力端子1、2から順に、サージ保護回路10と、比較回路20と、波形整形回路30と、フリップフロップ回路40と、CPU80を一連に接続して成り、さらに、波形整形回路30には遅延回路50が、また、比較回路20にはD/A変換回路60が接続されている。【0029】 さらに、本回路は、安定化電源回路120、リセット回路130、LED表示回路140、CPUクロック150を備えている。尚、このリセット回路130は、電源投入後にCPU80への供給電圧が所定の作動可能電圧になるまで、CPU80の動作を停止しリセット状態を保持するものであり、また、LED表示回路140は、CPU80の検出状態をモニタするためのLED141、142、143、144を点灯するための回路である。【0030】 入力端子1には、第1検出電極6が接続されており、この第1検出電極は、アース電極8と対向して配設されている。また、入力端子2には、第2検出電極7が接続されており、アース電極9と対向して配設されている。本実施の形態においては、この第1検出電極6とアース電極8間の基礎静電容量と、第2検出電極7とアース電極9との基礎静電容量は、同一に調整されているが、必ずしも同一である必要はない。【0031】 入力端子1、2には、トランス5が後続しており、ノイズ除去用のローパスフィルタを構成している。さらに、このトランス5に後続するサージ保護回路10は、サージノイズを除去するために設けられている。尚、このトランス5及びサージ保護回路10は、必ずしも必要ではなく、適宜、ノイズ除去用の他の回路を用いることもできる。【0032】 1/2DUTYの249Hzのパルス信号P1を供給するCPU80のポート81は、分枝された上、夫々、増幅抵抗3、4を介し、サージ保護回路10の抵抗11、12の直前に接続される。尚、パルス信号P1の周波数は、上記周波数に限定されるものではない。【0033】 増幅抵抗3と、第1検出電極6及びアース電極8との間で形成されるコンデンサとにより構成された積分回路により、パルス信号P1は、第1積分波形信号P2に変換される。この立ち上がり縁の傾斜は、増幅抵抗3と、第1検出電極6及びアース電極8との間で形成されるコンデンサとの時定数により決定される。また、増幅抵抗4と第2検出電極7及びアース電極9との間で形成されるコンデンサとにより構成された積分回路により、パルス信号P1は、第2積分波形信号P3に変換される。【0034】 比較回路20は、第1積分波形信号P2を遅延させた第1遅延パルス信号P4を形成する第1コンパレータ22と、第2積分波形信号P3を遅延させた第2遅延パルス信号P5を形成する第2コンパレータ23を備えている。この第1コンパレータ22のプラス極221には、第1積分波形信号P2が入力され、マイナス極222には、抵抗24により1.25Vに固定された直流電圧が供給されている。尚、コンデンサ25、27は平滑用のデカップリングコンデンサであり、抵抗26は分圧用の抵抗である。【0035】 一方、第2コンパレータ23のプラス極231には、第2積分波形信号P3が入力され、マイナス極232には、後述するD/A変換回路60からの可変制御された直流電圧が供給される。尚、両コンパレータ22、23は、オープンコレクタであるため、各出力端子223、233には、プルアップ抵抗28、29を介して、直流電圧が供給されている。【0036】 波形整形回路30は、第1ノット回路31と、第2ノット回路32と、第3ノット回路33とを備えている。この第1ノット回路31は、第1遅延パルス信号P4を位相反転すると共に、クロック信号P6へ波形整形し、また、第2ノット回路32は、第2遅延パルス信号P5を位相反転すると共に、第1データ信号P7へ波形整形する。【0037】 第3ノット回路33は、第2コンパレータ23の出力端子233の直後に分枝された第2遅延パルス信号P5を、後述する遅延回路50により4段階に遅延して形成し、位相反転し、第2データ信号P8へ波形整形する。【0038】 フリップフロップ回路40は、遅延型のフリップフロップ回路である第1フリップフロップ回路41及び第2フリップフロップ回路42を備えている。第1フリップフロップ回路のデータ入力端子411には、第1データ信号P7を、また、クロック入力端子412には、クロック信号P6を入力する。第1フリップフロップ回路41は、クロック信号P6の立ち上がり縁のタイミングにおける第1データ信号P7の信号レベルを反転した上、出力端子413から第1FF出力信号P9をCPU80のポート82へ出力する。【0039】 第2フリップフロップ回路42データ入力端子421には、第2データ信号P8を、また、クロック入力端子422には、クロック信号P6を入力する。第2フリップフロップ回路42は、クロック信号P6の立ち上がり縁のタイミングにおける第2データ信号P8の信号レベルを反転せずに出力端子423から第2FF出力信号としてCPU80のポート83へ出力する。【0040】 遅延回路50は、抵抗51と、コンデンサ52、53、54と、MOSトランジスタ55、56とから構成されている。このMOSトランジスタ55、56のゲートは、夫々、CPU80のポート84、85に接続され、ON/OFF制御されている。【0041】 この遅延回路50は、MOSトランジスタ55、56をON/OFF制御することにより、遅延回路50内の積分回路の時定数を4段階に制御する。従って、分枝された上記第2遅延パルス信号の遅延時間は4段階に制御される。即ち、両MOSトランジスタ55、56をOFF制御すると、抵抗51及びコンデンサ52により積分回路が構成される。【0042】 さらに、MOSトランジスタ55のみをON制御すると抵抗51及びコンデンサ52、53により、また、MOSトランジスタ56のみをON制御すると抵抗51及びコンデンサ52、54により、また、両MOSトランジスタ55、56をON制御すると抵抗51及びコンデンサ52、53、54により積分回路が構成される。【0043】 D/A変換回路60は、CPU80のポート86乃至93に接続した抵抗62乃至69から構成され、各ポートから8ビットデジタル2進データ信号を直流電圧に変換する。そして、第2コンパレータ23のマイナス極232に、1.0から1.5Vまでの直流電圧を256段階に可変制御し供給する。尚、本実施の形態においては、8ビットデジタル2進データを用いたが、本発明に係る回路は、当該ビット数に限定されるものではない。【0044】 次に、図2乃至図7に示すタイミングチャートにより、本実施の形態の回路の動作を説明する。最初に、本回路の電源をONにした直後の状態を図2を参照しつつ説明する。【0045】 本回路の電源をONにすると、CPU80のポート81から出力されたパルス信号P1は、分枝された上、上記各積分回路により、第1積分波形信号P2及び第2積分波形信号P3に変換される。【0046】 第1積分波形信号P2は、第1コンパレータ22に供給されている1.25Vの直流電圧のしきい値を越えたタイミングt1に立ち下がり縁を有する第1遅延パルス信号P4に変換される。一方、第2積分波形信号P3は、第2コンパレータ23に供給されている可変直流電圧のしきい値を越えたタイミングt2に立ち下がり縁を有する第2遅延パルス信号P5に変換される。【0047】 図2に示すタイミングチャートにおいて、第2コンパレータ23のマイナス極232に供給されている可変直流電圧は、最低値の1.0Vであるため、第1遅延パルス信号P4のタイミングt1は、第2遅延パルス信号P5のタイミングt2よりも進んでいる。【0048】 第1遅延パルス信号P4は、第1ノット回路31に入力され、クロック信号P6として出力され、第1フリップフロップ回路41及び第2フリップフロップ回路42の各クロック入力端子412、422に供給される。【0049】 分枝された第2遅延パルス信号P5は、第2ノット回路32に入力され、第1データ信号として第1フリップフロップ回路41へ入力される。また、分枝された他の第2遅延パルス信号P5は、遅延回路50により、所定時間遅延された上、第3ノット回路33に入力され、第2データ信号P8として第2フリップフロップ回路42へ入力される。従って、この第2データ信号P8の立ち上がり縁のタイミングt3は、タイミングt2よりもさらに遅延するように制御されている。【0050】 クロック信号P6の立ち上がり縁のタイミングt1において、第1データ信号P7は、LOWレベルであるため、反転出力される第1FF出力信号P9は、HIGHレベル信号になる。一方、第2データ信号P8は、LOWレベルであるため、そのまま出力される第2FF出力信号P10は、LOWレベル信号になる。【0051】 次に、CPU80は、第1FF出力信号が、LOWレベルになるまで、第2コンパレータ23のマイナス極232に供給されている可変直流電圧を最低値の1.0Vから上昇させて行く。この可変直流電圧は、上記CPU80のポート86乃至93から出力された8ビットデジタル2進コード信号が、D/A変換回路60により変換されたものであり、256段階の電圧値を有している。従って、この8ビットデジタル2進コード信号を+1づつ加算して可変直流電圧を上昇させて行く。尚、必ずしも+1づつ加算する必要はなく、所定の間隔でラフに加算又は減算を行い、後述する第1データと第2データを得ることもできる。【0052】 可変直流電圧を上昇させ、一定値の電圧値において、第1FF出力信号がHIGHレベルからLOWレベルへ変化した場合、この一定値の電圧値における8ビットデジタル2進コード信号を第1データとして、CPU80の内部のメモリに記憶する。【0053】 さらに、CPU80は、図3に示すように、第2FF出力信号がLOWレベルからHIGHレベルへ変化するまで、第2コンパレータ23のマイナス極232に供給されている可変直流電圧を上昇させる。図3において、この電圧は、仮に1.4Vとして表示されている。そして、1.4Vの電圧における8ビットデジタル2進コード信号を第2データとして、CPU80の内部のメモリに記憶する。【0054】 CPU80は、上記測定結果である第1データと第2データの中間電圧値に、第1データの一定の電圧値を加算し、バランス電圧値を算出する。そして、このバランス電圧値に相当する8ビットデジタル2進コード信号をD/A変換回路60へ出力する。【0055】 上記のバランス電圧値が、仮に1.3Vであった場合、そのタイミングチャートは、図4のようになる。即ち、タイミングt2とタイミングt1間の時間と、タイミングt1とタイミングt3間の時間は、等しくなる。この状態に至って、本回路は、検出可能状態になる。CPU80は、ポート82、83の何れのポートもLOWレベルを維持している場合には、両電極の何れの検出領域内に物体が存在しないと判断する。【0056】 次に、第1検出電極6の検出領域内のみに物体が接近又は接触し、第1検出電極6の電荷量が増大した場合を図5を参照しつつ説明する。【0057】 第1積分波形信号P2は、第1検出電極6とアース電極8間の静電容量が増大するため、第1積分波形信号P2の立ち下がり縁の傾斜がより小さくなる。従って、第1積分波形信号P2のタイミングt1は、第2データ信号P8の立ち上がり縁のタイミングt3よりも遅延してゆく。【0058】 このため、クロック信号P6の立ち上がり縁t1において、第2データ信号P8は、HIGHレベルであるため、第2FF出力信号P10は、LOWレベルからHIGHレベルへ変化する。一方、第1データ信号P7は、HIGHレベルのままであるため、第1FF出力信号P9は、LOWレベルを維持する。【0059】 ポート82、83のポートの信号レベルを監視していたCPU80は、夫々のポートの信号レベルが、LOWレベルとHIGHレベルになると、当該状態が0.2秒以上継続したことを条件に、第1検出信号をポート94から出力する。【0060】 尚、上記のタイミングt1が、タイミングt3よりも遅延する場合としては、所定の電荷を有する静止物体が検出電極7の検出領域内に存在した状態で上記図4に示したバランス状態に調整し、その後、当該物体が検出電極7の検出領域内から離間し、又は、離脱した場合にも生ずる。従って、ポート82、83のポートの信号レベルが、LOWレベルとHIGHレベルになった場合の第1検出信号は、物体が検出電極7の検出領域内から離間し、又は、離脱した場合にも出力される。【0061】 次に、第2検出電極7の検出領域内のみに物体が接近又は接触し、第2検出電極7の電荷量が増大した場合を図6を参照しつつ説明する。【0062】 第2積分波形信号P3は、第2検出電極7とアース電極9間の静電容量が増大するため、第2積分波形信号P3の立ち下がり縁の傾斜がより小さくなる。従って、第2積分波形信号P3のタイミングt2は、第1積分波形信号P2の立ち下がり縁のタイミングt1よりも遅延してゆく。【0063】 このため、クロック信号P6の立ち上がり縁t1において、第1データ信号P7は、LOWレベルであるため、第1FF出力信号P9は、LOWレベルからHIGHレベルへ変化する。一方、第2データ信号P8は、LOWレベルのままであるため、第2FF出力信号P10は、LOWレベルを維持する。【0064】 ポート82、83のポートの信号レベルを監視していたCPU80は、夫々のポートの信号レベルが、HIGHレベルとLOWレベルになると、当該状態が0.2秒以上継続したことを条件に、第2検出信号をポート94から出力する。【0065】 尚、上記のタイミングt2が、タイミングt1よりも遅延する場合としては、所定の電荷を有する静止物体が検出電極6の検出領域内に存在した状態で上記図4に示したバランス状態に調整し、その後、当該物体が検出電極6の検出領域内から離間し、又は、離脱した場合にも生ずる。従って、ポート82、83のポートの信号レベルが、HIGHレベルとLOWレベルになった場合の第2検出信号は、物体が検出電極6の検出領域内から離間し、又は、離脱した場合にも出力される。【0066】 図8は、図5に示した第1検出電極6の検出領域内のみに物体が接近又は接触した場合のタイミングチャートのパルス信号P1と第2FF出力信号を、さらに詳細に図示したタイミングチャートを示している。【0067】 第1検出電極6の検出領域内に物体が接近等すると、上述したように、第2FF出力信号が、安定したLOWレベル(非検出信号)から安定したHIGHレベル(有効検出信号)へ変化するが、実際には、図8に示すように、この非検出信号と有効検出信号の間には、LOWレベル又はHIGHレベルを交互に繰り返す無効検出信号が短時間出力される。【0068】 この無効検出信号は、タイミングt1と第2データ信号の立ち上がり縁のタイミングt3が略一致している場合に生じ、タイミングt1がタイミングt3よりも完全に遅延すると有効検出信号が形成されるのである。【0069】 この無効検出信号は、自動バランス調整後の時間の経過に伴い検出電極周囲の温度や湿度等が変化することによっても生じる。即ち、一方の検出電極の電荷量が、他方の検出電極の電荷量よりも徐々に増大し、あるいは、減少することにより、上記のバランス電圧値において、タイミングt2とタイミングt1間の時間と、タイミングt1とタイミングt3間の時間が相違し、無効検出信号が形成される。【0070】 しかし、上記検出電極の電荷量の変化は、温度等の変化に伴って生じるため、時間の経過と共に徐々に変化していく。従って、温度等の変化により生ずる無効検出信号の持続時間は、検出領域内の物体の接近や接触により生ずる電荷量の変化に比べて極めて長くなる。後述するように、この無効検出信号が出力されている時間が所定時間(2秒間)よりも長い場合、CPU80により上記の自動バランス調整が実行される。【0071】 次に、自動感度調整について説明する。検出電極を通じて外部ノイズが侵入した場合、または、電源部等から回路へノイズが侵入した場合には、タイミングt1、t2、t3に揺らぎ(ジッタ)を生じ、第1FF出力信号P9及び第2FF出力信号P10の何れもが上記の無効検出信号となり、チャタリングを生じる。【0072】 このチャタリングは、タイミングt2とタイミングt1間の時間、及び、タイミングt1とタイミングt3間の時間が短い場合、即ち、検出感度が高い状態では、比較的弱いノイズによって惹起される。【0073】 自動感度調整は、この各タイミング間の時間を調整することにより、ノイズの影響を排除する。図7は、図4に示す最も感度の高い状態から、遅延回路50により1段階検出感度を下げた状態のタイミングチャートを示している。図4のタイミングt2とタイミングt1間の時間、及び、タイミングt1とタイミングt3間の時間よりも、図7のタイミングt2とタイミングt1間の時間、及び、タイミングt1とタイミングt3間の時間の方か長くなっている。【0074】 具体的には、第1FF出力信号P9及び第2FF出力信号P10の何れもが、上記の無効検出信号となった場合には、CPU80は、ノイズにより正確な検出が不可能であると判断し、自動感度調整を実行する。即ち、遅延回路50を制御することにより、タイミングt2とタイミングt1間の時間、及び、タイミングt1とタイミングt3間の時間を段階的(4段階)に長くしてゆき、チャタリングが生じなくなった段階で自動感度調整を停止する。この自動感度調整により、検出感度の低下を必要最小限に抑えることができる。【0075】 次に、本実施の形態のCPU80のフロチャートを図9を参照しつつ各ステップ毎に説明する。本回路の電源を投入し(S1)、ポート84、85から自動感度調整を行う遅延回路50へ直流電流を出力しないことにより、検出感度が最も高い状態に設定される(S2)。【0076】 CPU80は、ポート86乃至93の各ポートから8ビットデジタル2進データ信号を出力し、上記の自動バランス調整を実行する(S3)。自動バランス調整終了後、ポート82の第1FF出力信号P9が、HIGHレベルであるか、および/または、ポート83の第2FF出力信号P10がHIGHレベルであるかを判定する。【0077】 上記のHIGHレベル信号が、有効検出信号であると判断されると(S6)、その有効検出信号の継続時間が0.2秒以上であるかが判断される(S7)。有効検出信号の継続時間が0.2秒以上である場合には、第1検出信号又は第2検出信号がポート94から1秒間出力される(S7)。0.2秒未満である場合には、S4へ復帰する。【0078】 有効検出信号の継続時間が、さらに持続し、10秒以上になった場合には、自動バランス調整を実行する(S9)。例えば、何れかの検出電極の検出領域内に、物体が10秒以上静止している場合、再度自動バランス調整を行うことにより、同検出電極の電荷量の増大の影響を排除することができる。従って、同検出電極と他の検出電極の静電容量のバランスが復元される。故に、この自動バランス調整の実行後はS4に復帰し、この静止物体が存在した状態において、他の物体が検出領域内に新たに浸入した場合でも、この他の物体を検出することができる。【0079】 上記S5において、HIGHレベル信号が、無効検出信号であると判断されると、次に、その無効検出信号が、両ポート82、83の何れにも発生しているかが判断される(S10)。両ポート82、83の何れにも無効検出信号が生じている場合には、自動感度調整を実行し、4段階の感度レベルを1段階下げ(S11)、S4へ復帰する。【0080】 ポート82、83の何れか一方のポートに無効検出信号が生じている場合には、その無効検出信号の継続時間が2秒以上であるかを判断する(S12)。2秒以上である場合には、自動バランス調整を実行し(S13)た後、S4へ復帰する。また、2秒未満である場合には、自動バランス調整を実行する必要がないものと判断し、自動バランス調整を実行せず、S4へ復帰する。【図面の簡単な説明】【図1】 本発明に係る実施の形態の静電容量センサ回路の回路図である。【図2】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、回路の作動直後の状態を示す。【図3】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、自動バランス調整中の作動状態を示す。【図4】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、自動バランス調整の完了状態を示す。【図5】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、第1検出電極の電荷量が増大した状態を示す。【図6】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、第2検出電極の電荷量が増大した状態を示す。【図7】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、自動感度調整により、検出感度を低下させた状態を示す。【図8】 図1の静電容量センサ回路の動作を示すタイミングチャートであり、第1FF出力信号の無効検出信号と有効検出信号を示している。【図9】 図1の静電容量センサ回路のCPU80の動作を示すフロチャートである。【図10】 従来の静電容量センサ回路のブロック図である。【符号の説明】1、2 入力端子3、4 増幅抵抗5 トランス6 第1検出電極7 第2検出電極8、9 アース電極10 サージ保護回路11、12 抵抗13、14 ESD20 比較回路22 第1コンパレータ23 第2コンパレータ30 波形整形回路31 第1ノット回路32 第2ノット回路33 第3ノット回路40 フリップフロップ回路41 第1フリップフロップ回路42 第2フリップフロップ回路50 自動感度調整回路60 D/A変換回路80 CPU120 安定化電源回路130 リセット回路140 LED表示回路150 CPUクロック パルス信号を発生するパルス信号発生回路と、該パルス信号を少なくとも2の検出電極の静電容量の変化に基づいてクロック信号、第1データ信号及び第2データ信号を形成する比較手段と、該第1データ信号のタイミングt2と該クロック信号のタイミングt1間の時間と、該クロック信号のタイミングt1と該第2データ信号のタイミングt3間の時間を制御する自動バランス調整手段と、該クロック信号と第1データ信号とを比較し、また、該クロック信号と第2データ信号を比較判断する判断手段とを有し、前記比較手段は、第1検出電極と接続されると共に前記クロック信号を形成する第1コンパレータと、第2検出電極と接続されると共に前記第1データ信号を形成する第2コンパレータと、前記第1データ信号を遅延して前記第2データ信号を形成する遅延回路とから成ることを特徴とする静電容量センサ回路。 前記自動バランス手段は、前記第1データ信号のタイミングt2と前記クロック信号のタイミングt1間の時間と、前記クロック信号のタイミングt1と前記第2データ信号のタイミングt3間の時間を均等に制御する請求項1記載の静電容量センサ回路。 前記自動バランス調整手段は、前記第2コンパレータの比較電圧を可変制御する請求項1記載の静電容量センサ回路。 前記自動バランス調整手段は、CPUにより作動するD/A変換回路である請求項1に記載の静電容量センサ回路。 前記判断手段は、前記クロック信号と前記第1データ信号を比較し、また、前記クロック信号と前記第2データ信号を比較した結果、何れか一方が所定時間以上無効検出状態にあると判断した場合には、自動バランス調整手段を作動させる請求項1記載の静電容量センサ回路。 前記判断手段は、前記クロック信号と前記第1データ信号を比較し、また、前記クロック信号と前記第2データ信号を比較した結果、何れか一方が有効検出状態にあると判断した場合には、検出信号を出力する請求項1記載の静電容量センサ回路。 前記判断手段は、検出信号を出力した後、前記クロック信号と前記第1データ信号を比較し、また、前記クロック信号と前記第2データ信号を比較した結果、何れか一方が所定時間以上有効検出状態にあると判断した場合には、自動バランス調整手段を作動させる請求項1記載の静電容量センサ回路。 前記判断手段は、前記クロック信号と前記第1データ信号を比較する第1フリップフロップ回路と、前記クロック信号と前記第2データ信号を比較する第2フリップフロップ回路と、該第1フリップフロップ回路及び該第2フリップフロップ回路の出力信号を判断するCPUから成る請求項1記載の静電容量センサ回路。 前記遅延回路は、前記第2データ信号の遅延時間を可変制御することにより、自動感度調整を行う請求項1記載の静電容量センサ回路。 前記判断手段は、前記クロック信号と前記第1データ信号を比較し、また、前記クロック信号と前記第2データ信号を比較した結果、何れもが無効検出状態にあると判断した場合には、前記遅延回路を作動させ検出感度を低下させる請求項1記載の静電容量センサ回路。 前記遅延回路は、CPUにより選択される複数の時定数を有する積分回路から成る請求項1記載の静電容量センサ回路。 前記判断手段は、静電容量センサ回路作動直後、前記自動バランス調整手段を作動させる請求項1記載の静電容量センサ回路。 前記判断手段は、静電容量センサ回路作動直後、前記遅延回路を作動させ、検出感度が最も高い状態に設定する請求項1記載の静電容量センサ回路。


ページのトップへ戻る

生命科学データベース横断検索へ戻る