タイトル: | 公開特許公報(A)_難消化性デキストリンの製造方法 |
出願番号: | 2014063795 |
年次: | 2015 |
IPC分類: | C12P 19/14 |
前田 栄彰 島田 研作 勝田 康夫 JP 2015181472 公開特許公報(A) 20151022 2014063795 20140326 難消化性デキストリンの製造方法 松谷化学工業株式会社 000188227 辻居 幸一 100092093 熊倉 禎男 100082005 箱田 篤 100084663 浅井 賢治 100093300 山崎 一夫 100119013 市川 さつき 100123777 前田 栄彰 島田 研作 勝田 康夫 C12P 19/14 20060101AFI20150925BHJP JPC12P19/14 A 6 OL 14 4B064 4B064AF04 4B064CA21 4B064CB07 4B064CC07 4B064DA10 本発明は、難消化性デキストリンの製造方法に関し、特に安価で、簡便且つ効率的に着色を抑制することができる難消化性デキストリンの製造方法に関する。 難消化性デキストリンは、食後の中性脂肪や糖の吸収を穏やかにする作用や整腸作用などの様々な生理機能を有しており、特定保健用食品等の健康食品に広く利用され、特に特定保健用食品では全体の約三分の一の食品に使用されている。また濃厚感付与、マスキング、味質改善、風味保持など、食品の食感改良や矯正を目的としても広く一般食品に利用されている素材である。 難消化性デキストリンは、澱粉に微量の塩酸を添加して加熱することにより調製される焙焼デキストリンに、加水分解酵素であるα−アミラーゼ、及びグルコアミラーゼを作用させた後、脱色、脱塩等の精製工程を経て製造される。その製造工程の澱粉の加熱工程(焙焼工程)や焙焼デキストリンの液化、糖化の加水分解工程において、加熱やそれに伴うカラメル化、メーラード反応によって着色物質が多く生成する。着色物質の除去には、反応終了後に活性炭やイオン交換樹脂が使用されるが(非特許文献1参照)、着色の程度が大きいと精製工程に大きな負荷がかかってくる。さらに精製が不十分であった場合、最終製品である難消化性デキストリンの品質にも影響を及ぼすこととなってくる。この点は難消化性デキストリンの製造コストアップや品質低下の要因となっており、その改善が望まれている。 特許文献1には、グルコースとソルビトール、クエン酸を加熱縮合して製造されるポリデキストロースの精製方法として、過酸化水素や過酸化ベンゾイル、亜塩素酸ナトリウムなどの漂白剤を用いて脱色する方法が記載されている。この方法は、漂白剤による脱色効果は期待できるが、同時に酸化反応によってカルボニル基が分子内に生成されるため構造自体が変化してしまう危険性がある。 また、特許文献2には、低カロリーグルコースポリマーの精製方法として、ポリグルコース、ポリデキストロース、ピロデキストリンをグルコースオキシダーゼで酸化し、次いでヒドロキシル型陰イオン交換体で処理する方法が記載されている。しかしながら、グルコースオキシダーゼによる酵素反応はタンク内にエアレーション等の通気が必要であること、並びにpHの低下に対して水酸化ナトリウム等で常に調整が必要であるなど、非常に手間とコストがかかる方法である。 さらに、特許文献3及び4には、ポリデキストロースや繊維含有可溶性デンプン誘導体の脱色方法として、ラネーニッケル等の触媒の存在下で水素添加する方法が記載されている。水素添加自体はマルチトールや還元水あめなど多くの食品で使用されている技術であるが、水素添加により還元末端がアルコール化されるため異なる物質となる。また水素添加やその後の精製にさらなるコストがかかる。米国特許第4,622,233号特開平7−196703号WO92/14761号特開平2003−183304号J. Appl. Glycosci., 50, 389-394(2003) 本発明の課題は、安価で、簡便且つ効率的に着色を抑制することができる難消化性デキストリンの製造方法を提供することにある。 本発明者らは、上記課題を解決すべく鋭意検討した結果、難消化性デキストリンの製造工程中の液化工程及び糖化工程の少なくとも一工程を活性炭の存在下で行うことにより、製品の着色が顕著に抑えられることを見出し、本発明を完成した。 すなわち、本発明によれば、以下の発明が提供される。(1)焙焼デキストリンの液化及び糖化工程を含む難消化性デキストリンの製造方法であって、液化工程及び糖化工程の少なくとも一工程が活性炭の存在下に行われることを特徴とする、難消化性デキストリンの製造方法。(2)焙焼デキストリンの液化工程が活性炭の存在下に行われる、上記(1)に記載の方法。(3)焙焼デキストリンの液化工程が、焙焼デキストリンの水溶液を加熱する工程である、上記(2)に記載の方法。(4)焙焼デキストリンの液化工程が、焙焼デキストリンの水溶液をα‐アミラーゼで加水分解する工程である、上記(2)に記載の方法。(5)焙焼デキストリンの糖化工程が活性炭の存在下に行われる、上記(1)に記載の方法。(6)焙焼デキストリンの糖化工程が、グルコアミラーゼ単独で、又はグルコアミラーゼとα‐アミラーゼとを組み合わせて用いて、焙焼デキストリンの液化液を加水分解する工程である、上記(5)に記載の方法。 本発明によれば、難消化性デキストリンの製造工程中の液化工程及び糖化工程の少なくとも一工程を活性炭の存在下で行うことにより、安価で、簡便且つ効率的に難消化性デキストリンの着色を抑制することができる製造方法を提供することが可能となる。 本発明の難消化性デキストリンの製造方法は、焙焼デキストリンの液化及び糖化工程を含み、液化工程及び糖化工程の少なくとも一工程が活性炭の存在下に行われることを特徴とする方法である。 本発明における難消化性デキストリンとは、衛新第13号(栄養表示基準における栄養成分等の分析方法等について)に記載の食物繊維の分析方法である高速液体クロマトグラフ法(酵素−HPLC法)で測定される難消化性成分を含むデキストリンのことをいう。難消化性成分の量は85〜95質量%含まれることが好ましく、90〜95質量%含まれることがより好ましい。 本発明における焙焼デキストリンとは、澱粉、例えばトウモロコシ、小麦、キャッサバ、馬鈴薯などの原料澱粉に、鉱酸、例えば硫酸、硝酸、塩酸などを数質量%(例えば、原料澱粉の質量に対して0.03〜0.1質量%)添加して水分を3%前後に予備乾燥した後、130℃〜180℃程度に加熱して得られる白度55〜65程度、難消化性成分の含有量が50〜65質量%程度のものをいう。 本発明において「液化工程」とは、活性炭の存在下または非存在下で、焙焼デキストリンの水溶液を80〜115℃程度の高温下で加熱する工程を指し、必要に応じてα−アミラーゼ等の液化酵素で加水分解する工程を含むことができる。具体的な装置としては、ジェットクッカーやバッチ式の加熱加圧蒸煮釜等をあげることができる。 本発明において「糖化工程」とは、活性炭の存在下または非存在下で、焙焼デキストリンの液化液にグルコアミラーゼを単独で又はグルコアミラーゼとα‐アミラーゼとを組み合わせて添加し、デキストリン中の消化性成分をグルコースに加水分解する工程をいう。一般的には糖化タンクを用いてバッチ式で反応を行う。 本発明において使用する「活性炭」はいずれのものでもよいが、取り扱い性の観点から粉末状の活性炭であることが好ましい。ガスで賦活された水蒸気炭や、薬品により賦活された塩化亜鉛炭等を使用することができるが、好ましくは塩化亜鉛炭である。 本発明において「着色度」とは、10質量%の試料溶液の420nmと720nmにおける吸光度を1cmセルを用いてそれぞれ分光光度計で測定し、その吸光度差を10倍した値を示す。 次に本発明の製造方法について詳細を述べる。 本発明において「液化工程」には更に「酵素を用いる液化工程」(すなわち酵素による消化工程を含む液化工程)と「酵素を用いない液化工程」(すなわち酵素による消化工程を含まない液化工程)の2種類がある。 酵素消化を含まない液化工程を行う場合には、まず焙焼デキストリンの水溶液、好ましくは35〜40質量%の水溶液を調製し、水酸化ナトリウム等のpH調整剤を用いて、焙焼デキストリンの水溶液のpHを、好ましくは4.0〜4.7、より好ましくは4.3〜4.5に調整する。 酵素消化を含む液化工程を行う場合には、まず焙焼デキストリンの水溶液、好ましくは35〜40質量%の水溶液を調製し、水酸化ナトリウム等のpH調整剤を用いて、焙焼デキストリンの水溶液のpHを、好ましくは5.3〜6.3、より好ましくは5.5〜5.8に調整する。その後、例えばα−アミラーゼを焙焼デキストリンの固形分に対して0.05〜0.2質量%添加すればよい。 その後、いずれの水溶液も、活性炭の存在下又は非存在下で、例えば、ジェットクッカー、加熱加圧蒸煮釜等の加熱装置を用いて、好ましくは80〜115℃、より好ましくは90〜110℃、更に好ましくは95〜105℃で、好ましくは15〜60分間、更に好ましくは30〜60分間程度加熱して焙焼デキストリンを液化する。α−アミラーゼを使用した場合には、次いで、必要に応じて120〜130℃程度に温度を上げてα−アミラーゼを失活する。 「糖化工程」を始める前に、例えば、冷却した焙焼デキストリンの液化液を糖化タンクへ移送し、好ましくは、水酸化ナトリウムや塩酸等のpH調整剤でpHを4.3〜4.7に調整する。液化工程で酵素消化を行わなかった場合は、α−アミラーゼを固形分に対して0.05〜0.2質量%及びグルコアミラーゼを固形分に対して0.1〜1.0質量%添加することが好ましい。 「液化工程」で酵素消化を行った場合は、グルコアミラーゼのみを固形分に対して0.1〜1.0質量%添加することが好ましい。 また、液化工程を活性炭の非存在下で行った場合は、焙焼デキストリンの液化液(上記液化工程を行った液)に活性炭を添加し、好ましくは50〜70℃、より好ましくは55℃〜65℃で3〜48時間、更に好ましくは同温度で6〜24時間消化して消化性糖質をグルコースに加水分解する。 活性炭の添加量は特に限定されないが、多すぎるとコスト面やろ過工程での負荷に繋がり、また少なすぎると効果が薄くなるため、固形分に対して0.1〜5.0質量%添加することが好ましく、0.5〜4.0質量%添加することがより好ましく、1.0〜4.0質量%とすることが更に好ましい。 また、活性炭を1.0〜2.5質量%の範囲で添加した時、糖化後に添加する従来の方法による着色抑制効果と比較して本発明の方法による着色抑制効果は顕著となるため、活性炭量を低量に制限したい場合に本発明の方法は特に有効である。 また、酵素反応中に活性炭が存在すると吸着によって酵素反応が阻害されることが予想されるが、意外なことに、活性炭の有無により最終的に生成するグルコース量に差は認められない。なお、液化工程を活性炭の存在下に行った場合は、糖化工程での活性炭の添加は不要である。 糖化工程終了後、好ましくは糖化液を80℃まで加熱して30分〜60分間保持した後、ロータリーバキュームフィルター、フィルタープレス等のろ過装置を用いてろ過する。この方法によって得られたろ過後の溶液は、従来の製造方法、すなわち、糖化工程終了後に活性炭を添加する方法で得られるろ過後の溶液に比べて着色度が10〜30%程度抑制されている。この抑制効果は、pHを低く調整したことによる効果だけでは説明し難く、液化及び/又は糖化工程中に活性炭を添加することにより、従来法に比べて着色抑制効果が増強されたと考えられるが、その理由は明らかでない。 また、糖化工程において活性炭を加えるよりも、液化工程において活性炭を添加する方がより高い着色抑制効果が認められるため、好ましい。更に、酵素を用いない液化工程に活性炭を添加する方がより高い着色抑制効果が認められるため、好ましい。 また、糖化工程において活性炭を加える場合には、グルコアミラーゼ単独で行う糖化工程よりも、α−アミラーゼ及びグルコアミラーゼ併用で行う糖化工程に添加する方が、より高い着色抑制効果が認められるため、好ましい。 ろ過した溶液は、必要に応じて、通常の製造工程に基づいて後処理することができる。津城の後処理では、活性炭による二次脱色及びろ過、イオン交換樹脂による脱塩、クロマト分離装置や逆浸透膜等による難消化性画分とグルコース画分の分離工程を経て得られる難消化性画分をさらに精製、濃縮して液状品とするか、噴霧乾燥により粉末化することで難消化性デキストリンを製造するが、本発明による難消化性デキストリンの製造方法では、ろ過後の着色度が従来の製造法と比較して低く抑えられるため、結果的に二次脱色や三次脱色で使用する活性炭の使用量が抑えられるか又は不要となり、またイオン交換樹脂の負荷が減るため樹脂の寿命を伸ばすことが可能となり、精製工程の大幅なコストダウンと品質向上が期待できる。 以下に実施例を示して本発明をさらに詳しく説明するが、本発明はこれに限定されるものではない。[実施例1] 糖化時に活性炭1.5%を添加する例(その1) 焙焼デキストリンに水を加えて40質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して1.5質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は2.65であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例1とぼぼ同一であった(表1)。[比較例1] 糖化後に活性炭1.5%を添加する例(その1) 焙焼デキストリンに水を加えて40質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%添加し、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して1.5質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は2.92であった。[実施例2] 糖化時に活性炭1.5%を添加する例(その2) 焙焼デキストリンに水を加えて40質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して1.5質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は2.06であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例1とぼぼ同一であった(表1)。[比較例2] 糖化後に活性炭1.5%を添加する例(その2) 焙焼デキストリンに水を加えて40質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して1.5質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は2.72であった。[実施例3] 液化時に活性炭2.0%を添加する例(その1) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して2.0質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.73であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例3及び4とぼぼ同一であった(表2)。[実施例4] 液化時に活性炭2.0%を添加する例(その2) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して2.0質量%添加し、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間糖化加水分解を行った。この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.44であり、活性炭2%を添加した実施例の中で最も着色度が低かった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例3及び4とぼぼ同一であった(表2)。[実施例5] 糖化時に活性炭2.0%を添加する例(その1) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して2.0質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.94であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例3及び4とぼぼ同一であった(表2)。[実施例6] 糖化時に活性炭2.0%を添加する例(その2) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して2.0質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.59であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例3及び4とぼぼ同一であった(表2)。[比較例3] 糖化後に活性炭2.0%を添加する例(その1) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間糖化加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して2.0質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は2.22であった。[比較例4] 糖化後に活性炭2.0%を添加する例(その2) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して2.0質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は2.06であった。[実施例7] イオン交換樹脂への負荷試験 実施例4及び比較例3で得られたろ液を、カチオン(アンバーライト200CT、オルガノ(株)製)5mlとアニオン(アンバーライトIRA900、オルガノ(株)製)10mlを混合して充填したカラムにSV=3で通液した。通過液を固形分換算で1gづつ分画し、各画分のBrix、pH、電気伝導度及び着色度を測定した。画分30及び60分析結果を表3に示す。液化工程及び糖化工程を活性炭の存在下で実施することによって、イオン交換工程で塩類のリークが抑制され、処理糖液のpHがより安定していることから、同量の糖液を通液させた場合、イオン交換樹脂の負荷が大きく減ることとなる。[実施例8] 糖化時に活性炭3.0%を添加する例(その1) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して3.0質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.00であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例5及び6とぼぼ同一であった(表4)。[比較例5] 糖化後に活性炭3.0%を添加する例(その1) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して3.0質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.26であった。[比較例6] 糖化後に活性炭3.0%を添加する例(その2) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して3.0質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は1.16であった。[実施例9] 液化時に活性炭4.0%を添加する例(その1) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して4.0質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は0.69であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例7及び8とぼぼ同一であった(表5)。[実施例10] 液化時に活性炭4.0%を添加する例(その2) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して4.0質量%添加し、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1重量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は0.61であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例7及び8とぼぼ同一であった(表5)。[実施例11] 糖化時に活性炭4.0%を添加する例 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1重量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して4.0質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は0.78であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例7及び8とぼぼ同一であった(表5)。[実施例12] 糖化時に活性炭4.0%を添加する例(その2)。 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して4.0質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し60分保持後、珪藻土ろ過を行った。ろ液の着色度は0.68であった。また、分解度の指標となる浸透圧、糖組成(グルコース生成量)は従来法である比較例7及び8とぼぼ同一であった(表5)。[比較例7] 糖化後に活性炭4.0%を添加する例 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを5.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%添加し、95℃で30分間加熱して液化した。その後、121℃で10分間保持してα−アミラーゼを失活させた。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して4.0質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は0.86であった。[比較例8] 糖化後に活性炭4.0%を添加する例(その2) 焙焼デキストリンに水を加えて35質量%とし、水酸化ナトリウムを加えてpHを4.5に調整した後、95℃で30分間加熱して液化した。その後、他の実験と加熱条件を合わせるために121℃で10分間保持した。 次いで、温度を60℃まで冷却して、水酸化ナトリウム、塩酸を用いてpHを4.5に調整した後、α−アミラーゼ(ターマミル、ノボ社製)を固形分に対して0.1質量%、グルコアミラーゼ(AMG、ノボ社製)を固形分に対して0.6質量%添加して60℃で14時間加水分解を行った。 この後、糖化液を80℃まで加熱し、塩化亜鉛炭(カルボラフィン20、日本エンバイロケミカルズ社製)を固形分に対して4.0質量%添加した後に60分保持後、珪藻土ろ過を行った。ろ液の着色度は0.83であった。 焙焼デキストリンの液化及び糖化工程を含む難消化性デキストリンの製造方法であって、液化工程及び糖化工程の少なくとも一工程が活性炭の存在下に行われることを特徴とする、難消化性デキストリンの製造方法。 焙焼デキストリンの液化工程が活性炭の存在下に行われる、請求項1記載の方法。 焙焼デキストリンの液化工程が、焙焼デキストリンの水溶液を加熱する工程である、請求項2記載の方法。 焙焼デキストリンの液化工程が、焙焼デキストリンの水溶液をα‐アミラーゼにより加水分解する工程である、請求項2記載の方法。 焙焼デキストリンの糖化工程が活性炭の存在下に行われる、請求項1記載の方法。 焙焼デキストリンの糖化工程が、グルコアミラーゼ単独で、又はグルコアミラーゼとα‐アミラーゼとを組み合わせて用いて、焙焼デキストリンの液化液を加水分解する工程である、請求項5に記載の方法。 【課題】安価で、簡便且つ効率的に着色を抑制することができる難消化性デキストリンの製造方法を提供すること【解決手段】焙焼デキストリンの液化及び糖化工程を含む難消化性デキストリンの製造方法であって、液化工程及び糖化工程の少なくとも一工程が活性炭の存在下に行われることを特徴とする、難消化性デキストリンの製造方法。【選択図】なし