タイトル: | 公開特許公報(A)_ガスセンサ素子の製造方法 |
出願番号: | 2013243655 |
年次: | 2014 |
IPC分類: | G01N 27/409 |
佐口 孝 高木 貴史 JP 2014178303 公開特許公報(A) 20140925 2013243655 20131126 ガスセンサ素子の製造方法 日本特殊陶業株式会社 000004547 赤尾 謙一郎 100113022 下田 昭 100110249 栗原 和彦 100116090 佐口 孝 高木 貴史 JP 2013026503 20130214 G01N 27/409 20060101AFI20140829BHJP JPG01N27/58 B 4 3 OL 11 2G004 2G004BB01 2G004BC02 2G004BC07 2G004BD04 2G004BE13 2G004BE14 2G004BE16 2G004BE22 2G004BG05 2G004BH12 2G004BH15 本発明は、被検出ガスの濃度を検出するガスセンサ素子の製造方法に関する。 自動車等の排気ガス中の酸素濃度を検出するガスセンサとして、軸線方向に延びつつ先端が閉じた略円筒状のガスセンサ素子を、筒状の主体金具の内側に挿通して保持するものが知られている。このガスセンサ素子は、筒体の固体電解質体と、固体電解質体の内外表面にそれぞれ形成された内側電極及び外側電極とを有している。 これらの内側電極及び外側電極を形成する方法として、固体電解質体の表面の電極形成部分に白金の有機化合物を印刷等で塗布した後、この化合物の熱分解温度以上に加熱して還元することで単一の白金からなる白金の核を形成し、次いでこの核に白金を無電解めっきする方法が開発されている(特許文献1)。 又、上述の白金の核を物理蒸着法(PVD)によって形成する方法が開発されている(特許文献2)。特開平9−304334号公報特開2004−170404号公報 しかしながら、特許文献1記載の技術の場合、白金の有機化合物を熱分解温度以上に加熱して析出した白金の金属粒子同士が凝集し、最終的に得られる白金の核のサイズが不均一になるという問題がある。そのため、核の表面にめっきされる電極の厚みも不均一になり、得られたガスセンサ素子のガス検出精度が低下するおそれがある。 一方、特許文献2記載の技術の場合、固体電解質体の表面に白金を直接析出させるため、白金の核のサイズが不均一になることを防止できるが、蒸着設備が複雑となり、製造コストの上昇を招く。 従って、本発明は、固体電解質体の表面に電極を容易に形成できると共に、ガス検出精度の低下を抑制したガスセンサ素子の製造方法の提供を目的とする。 上記課題を解決するため、本発明のガスセンサ素子の製造方法は、固体電解質体と、該固体電解質体の表面に形成された電極とを有するガスセンサ素子を製造するにあたり、該表面のうち前記電極を形成する予定の電極予定部に貴金属粒子を付着させて核形成部を形成する核付け工程と、前記核形成部に対してメッキを施して前記電極を形成するメッキ工程と、を有し、前記核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる前記貴金属粒子と、を含有する溶液又はペーストを前記電極予定部に塗布する塗布工程と、前記溶液又は前記ペーストを塗布した前記電極予定部を、前記溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して、該溶媒を除去して前記核形成部を形成する除去工程と、を有する。 このガスセンサ素子の製造方法によれば、電極予定部に溶液又はペーストを用いて核形成部を形成する際に、溶媒をその揮発温度又は沸点のいずれか低い方の温度以上に加熱して除去すれば済むので、加熱温度が比較的低温となり、貴金属粒子同士が凝集し難くなる。これにより、最終的に得られる貴金属粒子の核のサイズ及び厚みが均一になり、核の表面にメッキされる電極の厚みも均一になり、得られたガスセンサ素子のガス検出精度の低下を抑制することができる。 前記加熱温度は、前記貴金属粒子同士が凝集する温度以下であることが好ましい。 このガスセンサ素子の製造方法によれば、貴金属粒子同士の凝集を確実に抑制し、貴金属粒子の核のサイズ及び厚みがより一層均一になる。 前記ペーストは、バインダを更に含有してもよい。 このガスセンサ素子の製造方法によれば、ペーストが粘性を有するので、ペーストを電極予定部に塗布し易くなる。 前記貴金属粒子の個数基準による粒子径分布幅(D90−D10)が50nm以下であることが好ましい。 このガスセンサ素子の製造方法によれば、貴金属粒子の核のサイズ及び厚みがより一層均一になる。 この発明によれば、固体電解質体の表面に電極を容易に形成できると共に、ガス検出精度の低下を抑制したガスセンサ素子が得られる。本発明によって製造されたガスセンサ素子を組み付けたガスセンサを軸線方向に沿う面で切断した断面図である。ガスセンサ素子の内側電極、外側電極の構成を示す斜視図である。ガスセンサ素子の製造方法を示す工程図である。 以下、本発明の実施形態について説明する。 図1は、本発明によって製造されたガスセンサ素子3を有するガスセンサ100を、軸線O方向に沿う面で切断した断面構造を示す。この実施形態において、ガスセンサ100は自動車の排気管内に挿入されて先端が排気ガス中に曝され、排気ガス中の酸素濃度を検出する酸素センサになっている。ガスセンサ素子3は、酸素イオン伝導性の固体電解質体に一対の電極を積層した酸素濃淡電池を構成し、酸素量に応じた検出値を出力する公知の酸素センサ素子である。 なお、図1の下側をガスセンサ100の先端側とし、図1の上側をガスセンサ100の後端側とする。 ガスセンサ100は、先端が閉じた略円筒状(中空軸状)のガスセンサ素子(この例では酸素センサ素子)3を、筒状の金具本体(主体金具)20の内側に挿通して保持するよう組み付けられている。ガスセンサ素子3は、先端に向かってテーパ状に縮径する筒状の固体電解質体3sと、固体電解質体の内周面と外周面にそれぞれ形成された内側電極50(図2参照)及び外側電極450(図2参照)とからなる。又、ガスセンサ素子3の中空部には丸棒状のヒータ15が挿入され、固体電解質体3sを活性化温度に昇温するようになっている。 なお、内側電極50及び外側電極450が特許請求の範囲の「電極」に相当する。 金具本体20の後端部には、ガスセンサ素子3の後端側に設けられたリード線や端子(後述)を保持し、センサ素子3の後端部を覆う筒状の外筒40が接合されている。さらに、ガスセンサ素子3の後端側の外筒40内側には、絶縁性で円柱状のセパレータ121が加締め固定されている。一方、ガスセンサ素子3先端の検出部はプロテクタ7で覆われている。そして、このようにして製造されたガスセンサ100の金具本体20の雄ねじ部20dを排気管等のネジ孔に取付けることで、ガスセンサ素子3先端の検出部を排気管内に露出させて被検出ガス(排気ガス)を検知している。なお、金具本体20の中央付近には、六角レンチ等を係合するための多角形の鍔部20cが設けられ、鍔部20cと雄ねじ部20dとの間の段部には、排気管に取付けた際のガス抜けを防止するガスケット14が嵌挿されている。 ガスセンサ素子3の中央側に鍔部3aが設けられ、金具本体20の先端寄りの内周面には内側に縮径する段部が設けられている。又、段部の後端向き面にワッシャ12を介して筒状のセラミックホルダ5が配置されている。そして、ガスセンサ素子3が金具本体20及びセラミックホルダ5の内側に挿通され、セラミックホルダ5に後端側からワッシャ13を介してガスセンサ素子3の鍔部3aが当接している。 さらに、鍔部3aの後端側におけるガスセンサ素子3と金具本体20との径方向の隙間に、筒状の滑石粉末6、及び筒状のセラミックスリーブ10が配置されている。そして、セラミックスリーブ10の後端側に金属リング30を配し、金具本体20後端部を内側に屈曲して加締め部20aを形成することにより、セラミックスリーブ10が先端側に押し付けられる。これにより滑石リング6を押し潰し、セラミックスリーブ10及び滑石粉末6が加締め固定されるとともに、ガスセンサ素子3と金具本体20の隙間がシールされている。 ガスセンサ素子3の後端側に配置されたセパレータ121には、挿通孔(この例では4個)が設けられ、そのうち2個の挿通孔にそれぞれ内側端子金具71、外側端子金具91の板状基部74、94が挿入されて固定されている。各板状基部74、94の後端にはそれぞれコネクタ部75、95が形成され、コネクタ部75、95にそれぞれリード線41、41が加締め接続されている。又、セパレータ121の図示しない2個の挿通孔(ヒータリード孔)に、ヒータ15から引き出されたヒータリード線43(図1では1個のみ図示)が挿通されている。 セパレータ121の後端側の外筒40内側には筒状のグロメット131が加締め固定され、グロメット131の4個の挿通孔からそれぞれ2個のリード線41、及び2個のヒータリード線43が外部に引き出されている。 なお、グロメット131の中心には貫通孔131aが形成され、ガスセンサ素子3の内部空間に連通している。そして、グロメット131の貫通孔131aに撥水性の通気フィルタ140が介装され、外部の水を通さずにガスセンサ素子3の内部空間に基準ガス(大気)を導入するようになっている。 一方、金具本体20の先端側には筒状のプロテクタ7が外嵌され、金具本体20から突出するガスセンサ素子3の先端側がプロテクタ7で覆われている。プロテクタ7は、複数の孔部(図示せず)を有する有底筒状で金属製(例えば、ステンレスなど)二重の外側プロテクタ7bおよび内側プロテクタ7aを、溶接等によって取り付けて構成されている。 次に、図2を参照して外側電極450及び内側電極50の構成について説明する。図2に示すように、内側電極50は固体電解質体3sの内周面に形成され、先端側に位置して周方向全周にわたって形成された内側検知部51と、内側検知部51から後端に向かって延びると共に周方向の一部に形成され、内側検知部51より径方向に幅狭の細長い内側リード部52と、内側リード部52より後端側に延びる内側端子接続部53とを一体に有している。なお、この例では、内側検知部51は固体電解質体3sの内周面の底部にも形成されている。又、内側端子接続部53は内側リード部52より幅広で、固体電解質体3sの内周面の周方向の一部に形成されている。但し、内側端子接続部53は内側リード部52と同じ幅であってもよく、周方向の全周にわたって形成されていてもよい。 一方、外側電極450は固体電解質体3sの外周面に形成され、先端側に位置して周方向の一部にわたって形成された外側検知部451と、外側検知部451から後端に向かって延びると共に周方向の一部に形成され、外側検知部451より径方向に幅狭の細長い外側リード部452と、外側リード部452より後端側に延びる外側端子接続部453とを一体に有している。なお、この例では、外側検知部451は固体電解質体3sの内周面の底部にも一部形成されている。又、外側端子接続部453は外側リード部452より幅広で、固体電解質体3sの外表面の周方向に全周の1/3の長さだけ形成されている。但し、外側端子接続部453は外側リード部452と同じ幅であってもよく、周方向の全周にわたって形成されていてもよい。 この内側検知部51は、ガスセンサ素子3の内部空間に導入される基準ガス雰囲気に曝される。一方、ガスセンサ素子3の外面に形成された外側電極450は被検出ガスに曝され、固体電解質体3sを介して内側電極50(の内側検知部51)と外側電極450(の外側検知部451)との間でガスの検知を行うようになっている。 内側端子接続部53は、固体電解質体3sの開口部に挿入された内側端子金具71に電気的に接続され、ガスセンサ素子3の検出出力を内側端子金具71から外部に取り出すようになっている。また、外側端子接続部453は、固体電解質体3sに嵌めこまれた外側端子金具91に電気的に接続され、ガスセンサ素子3の検出出力を内側端子金具91から外部に取り出すようになっている。 次に、図3を参照し、本発明の実施形態に係るガスセンサ素子の製造方法について説明する。なお、本発明は、外側電極450と内側電極50の少なくとも一方に適用されるが、外側電極450に本発明を適用して製造する場合について例示する。 図3は、固体電解質体3sの外周面(表面)のうち、外側電極450を形成する予定の電極予定部450xを示す。電極予定部450xは外側電極450と同一寸法の領域であり、外側検知部予定部451xと、外側リード部予定部452xと、外側端子接続部予定部453xとを一体に有している。 まず、核付け工程では、電極予定部450xに貴金属粒子を付着させて核形成部を形成する。核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる貴金属粒子とを含有する溶液又はペーストを電極予定部450xに塗布する塗布工程と、この溶液又はペーストを塗布した電極予定部450xを溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して溶媒を除去する除去工程と、を有する。 貴金属粒子としては、白金族、又はそれらの合金のうち1種類からなる(これを「単一」という)粒子が挙げられるが、白金粒子やパラジウム粒子が好ましい。この貴金属粒子の平均粒子径は100nm以下であることが好ましい。上記平均粒子粒径が100nmを超えると、貴金属粒子を電極予定部上に成膜した際、膜の凹凸が大きくなり、膜の上に形成される電極の厚みも不均一になる場合がある。 ここで、貴金属粒子の粒子径は、以下のようにして測定する。まず、上記溶液又はペーストをアルミナ製の平板に塗布する。次に、上記溶媒の揮発温度又は沸点のうち低い方の温度(下記の有機バインダをさらに含む場合は、溶媒と有機バインダの揮発温度又は沸点のうち高い方の温度)で加熱処理する。そして、倍率100000倍のSEM(走査電子顕微鏡)写真にて、ランダムに100個の粒子を選定し(SEM写真上では、背景となるアルミナに対し、貴金属粒子が白い画像として区別される)、画像解析ソフトにて、各粒子毎の粒子径(粒子面積の円換算径)をそれぞれ測定する。そして、100個の粒子につき、細かい粒子の側をゼロとして粒子の累積個数が90%となる粒子径をD90と定める。なお、粒子の累積個数が10%となる粒子径をD10、粒子の累積個数が50%となる粒子径をD50とする。 貴金属粒子のD90が100nm以上になると、貴金属粒子同士が凝集し、最終的に得られる核のサイズや厚みが不均一になり、核の表面にめっきされる電極の厚みも不均一になり、得られたガスセンサ素子のガス検出精度が低下する。なお、D90の下限は特に限定されないが、例えば10nmとする。D90が10nm以下のものは製造が難しい。 貴金属粒子の個数基準による粒子径分布幅(D90−D10)が50nm以下であることが好ましい。(D90−D10)が50nm以下であると、貴金属粒子の粒径分布がシャープであり、貴金属粒子の核のサイズ及び厚みがより一層均一になる。なお、(D90−D10)の下限は特に限定されないが、例えば10nmとする。(D90−D10)が10nm以下のものは製造が難しい。 表1は、貴金属粒子の粒子径の分布状態を実際に測定した結果を示し、表1の各データ区間の数は、該当する粒子径の粒子の個数を表す。なお、表1の実施例1〜3,2については、SEM写真上で各粒子がほぼ円形であるので、単体粒子(つまり、2個以上の粒子が凝集していない)とみなした。 なお、表1の「実施例1〜3」はそれぞれD90が異なる貴金属粒子である白金粒子を、溶媒(ターピネオールとアルキルアミン)で混合した溶液を用いた。そして、この溶液をアルミナ上に塗布し、250℃に加熱して溶媒を除去し、上述の方法により貴金属粒子のD10,D50,D90を測定した。 又、「従来例」としては、白金錯塩と還元剤を混合した溶液を用いた。そして、この溶液をアルミナ上に塗布し、70℃に加熱して還元反応を生じさせて核を析出させた。その後120℃まで昇温して水分を揮発させ、上述の方法により核のD10,D50,D90を測定した。 貴金属粒子は、溶液又はペースト全体に対して、例えば0.5〜5.0質量%配合することができる。 溶媒としては、水の他、水系溶媒、有機溶媒(例えば、アルコール、トルエン、クロロホルム、ヘキサン、ターピネオール)を用いることができる。有機溶媒の具体例としては、アルキルアセタール化ポリビニルアルコールが挙げられる。 又、貴金属粒子を凝集させずに溶媒に分散させるため、ポリカルボン酸系、ウレタン系、アクリル樹脂系、エステル類、アミン類、イミン類、チオール類などの公知の分散剤を用いることができる。分散剤の具体例としては、アルキルアミン、カルボン酸アミド、脂肪酸、アルコキシシリル、ポリエチレンイミン、ポリビニルピロリドンが挙げられる。分散剤は、貴金属粒子を覆い、金属コロイドとして溶媒中に分散させる。又、分散剤と貴金属粒子とを混合してもよい。 さらに、溶媒と、貴金属粒子を含む溶液に対し、各種の有機バインダを加えて粘度を高めることにより、ペーストとすることができる。なお、溶媒が有機溶媒であるときの有機バインダとしては、アクリル系樹脂、ウレタン系樹脂等が挙げられる。また、溶媒が水系溶媒であるときの有機バインダとしては、セルロース系樹脂が挙げられる。 以上のようにして、溶液又はペーストを調製することができる。 そして、塗布工程では、この溶液又はペーストを、例えば、印刷(転写を含む)、スプレー、ディップ(浸漬)法、インクジェット方式等によって電極予定部450xに塗布することができる。 上記塗布工程では、電極予定部450xの少なくとも一部を塗布すればよく、例えば、図3の電極予定部450xのうち、外側検知部予定部451xと、外側リード部予定部452xのうち鍔部3aよりも先端側の部分(これらの領域を合わせて図3に電極予定部450yとして表記)にのみ溶液又はペーストを塗布し、それ以外の部分は本発明と別の方法で電極を形成してもよい。 又、上記ディップ法は、固体電解質体3sの表面のうち周方向の全面を塗布する場合に好適に用いることができる。例えば、図2の内側検知部51を形成する場合、固体電解質体3sの内部空間の底面(先端)側から所定深さまで上記溶液を満たすことで、ディップ(浸漬)法により塗布を行うことができる。同様に、外側検知部451を固体電解質体3sの外面の周方向全周に形成する場合、固体電解質体3sを先端側から所定深さまで上記溶液に浸漬することで、ディップ(浸漬)法により塗布を行うことができる。 以上のようにして、マスクを用いずに、所定形状の電極予定部450xに溶液又はペーストを塗布することができる。 次に、除去工程では、上記溶液又はペーストを塗布した電極予定部450xを、溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱することで溶媒を除去し、貴金属粒子を含む核形成部を電極予定部450xの表面に均一に成膜する。ここで、揮発温度又は沸点が低い溶媒を用いるほど、加熱温度が低温となるので、貴金属粒子同士が凝集し難くなる。これにより、最終的に得られる貴金属粒子の核のサイズ及び厚みが均一になり、核の表面にメッキされる電極の厚みも均一になり、得られたガスセンサ素子のガス検出精度の低下を抑制することができる。 例えば、溶媒として水を用いた場合、加熱温度を120℃程度とすることができ、貴金属粒子同士の凝集を抑制することができる。特に、溶媒の揮発温度又は沸点を200℃未満とし、加熱温度を200℃未満とすることが好ましい。 又、加熱温度は、貴金属粒子同士が凝集する温度以下とすることが好ましい。ここで、「貴金属粒子同士が凝集する温度」は、貴金属粒子の粒径、分散剤の種類等によっても異なるので、上記溶液又はペーストを加熱したとき、上述の粒子径の測定方法(SEM写真)で、2個以上の粒子が凝集したものが1つでも確認されたときの温度とする。 なお、溶液又はペーストに、貴金属粒子の凝集を抑制する凝集抑制剤を添加してもよい。凝集抑制剤としては、ジルコニウム、アルミニウム、チタン、マグネシウムのいずれかの有機金属化合物とレジンを含有するものが挙げられる。レジンとしては、セルロース系樹脂、ビニル系樹脂が例示され、具体的には、エチルセルロース、ニトロセルロース、ポリビニルアセタール、ポリビニルアルコールが挙げられる。 次に、メッキ工程に進み、電極予定部450xに形成された核形成部が触媒として作用するメッキ液を用いて、メッキ液中の貴金属(白金等)を電極予定部450xの表面に析出させ、外側電極450を形成する。 具体的には、電極予定部450xを含む固体電解質体3sをメッキ液中に浸漬させた状態で、メッキ液を加熱し、その後、所定時間放置する。これにより、メッキ液中の貴金属(白金等)を、固体電解質体3sの上記電極予定部450xに析出させることができる。その後、熱処理工程に進み、メッキ済みの固体電解質体3sを、例えば1200℃で加熱処理する。これにより、外側電極450(メッキ層)を固体電解質体3sの内表面に焼き付けて、所定の特性を付与することができる。このようにして外側電極450を形成し、得られたガスセンサ素子3は、公知の組立方法(例えば、特開2004−053425号参照)により、ガスセンサ100(図1参照)に組み付けることができる。なお、分散剤やバインダ等の有機物は上記熱処理工程にて焼失する。 なお、メッキ液として、例えば、白金錯塩水溶液(白金濃度;15g/L)とヒドラジンの水溶液(濃度;85質量%)とを混合して調整した組成を用いることができる。 又、内側電極50を形成する場合は、注液装置を用いて、固体電解質体3sの内部空間にメッキ液を注入すればよい。 本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。例えば、内側電極及び外側電極の形状は上記に限定されない。 3 ガスセンサ素子 3s 固体電解質体 50、450 電極 450x、450y 電極予定部 固体電解質体と、該固体電解質体の表面に形成された電極とを有するガスセンサ素子を製造するにあたり、 該表面のうち前記電極を形成する予定の電極予定部に貴金属粒子を付着させて核形成部を形成する核付け工程と、 前記核形成部に対してメッキを施して前記電極を形成するメッキ工程と、 を有するガスセンサ素子の製造方法であって、 前記核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる前記貴金属粒子と、を含有する溶液又はペーストを前記電極予定部に塗布する塗布工程と、前記溶液又は前記ペーストを塗布した前記電極予定部を、前記溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して、該溶媒を除去して前記核形成部を形成する除去工程と、を含むガスセンサ素子の製造方法。 前記加熱温度は、前記貴金属粒子同士が凝集する温度以下である請求項1記載のガスセンサ素子の製造方法。 前記ペーストは、バインダを更に含有する請求項1又は2記載のガスセンサ素子の製造方法。 前記貴金属粒子の個数基準による粒子径分布幅(D90−D10)が50nm以下である請求項1〜3のいずれか記載のガスセンサ素子の製造方法。 【課題】固体電解質体の表面に電極を容易に形成できると共に、ガス検出精度の低下を抑制したガスセンサ素子の製造方法を提供する。【解決手段】固体電解質体3sとその表面に形成された電極とを有するガスセンサ素子3を製造するにあたり、該表面のうち電極を形成する予定の電極予定部450x、450yに貴金属粒子を付着させて核形成部を形成する核付け工程と、核形成部に対してメッキを施して電極を形成するメッキ工程と、を有するガスセンサ素子の製造方法であって、核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる貴金属粒子と、を含有する溶液又はペーストを電極予定部に塗布する塗布工程と、溶液又はペーストを塗布した電極予定部を、溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して、該溶媒を除去して核形成部を形成する除去工程と、を含む。【選択図】図3