生命科学関連特許情報

タイトル:公開特許公報(A)_ヒト多能性幹細胞からの肺及び気道の上皮の産生並びにその使用
出願番号:2012242667
年次:2014
IPC分類:C12N 5/10,C12N 5/07,C12N 5/073


特許情報キャッシュ

ハンス−ウィレム スノエック サラ シュエリアン フアン JP 2014023519 公開特許公報(A) 20140206 2012242667 20121102 ヒト多能性幹細胞からの肺及び気道の上皮の産生並びにその使用 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 505346702 高島 一 100080791 ハンス−ウィレム スノエック サラ シュエリアン フアン US 61/675,069 20120724 C12N 5/10 20060101AFI20140110BHJP C12N 5/07 20100101ALI20140110BHJP C12N 5/073 20100101ALI20140110BHJP JPC12N5/00 102C12N5/00 202C12N5/00 202B 35 1 OL 64 特許法第30条第2項適用申請有り 2012年5月31日 年次経過報告集会、ニューヨーク幹細胞財団においてパワーポイントにて発表 4B065 4B065AA90X 4B065AA90Y 4B065AB01 4B065BA01 4B065BC41 4B065CA44関連出願の相互参照 本出願は、2012年4月24日に出願された、米国仮出願番号61/675,069、表題「ヒト多能性幹細胞からの肺及び気道の上皮の産生並びにその使用」に対し、優先権を主張し、参照することにより該出願全体を本明細書に組み込む。発明の背景 肺疾患は主要な死亡原因である。いくつかの肺疾患については、移植が効果的な治療の選択肢であるが、しかしながら、それはドナー臓器の低い利用可能性、移植手順に関連した外科的及び内科的合併症、並びに免疫学的拒絶により妨げられる。それ故、自己細胞から肺組織を再生する可能性は、重要な医学の前進となるであろう。 最初の一連の実施形態によれば、基盤技術(platform)は、例えば、嚢胞性線維症、気管食道瘻(tracheoesophagal fistula)、サーファクタント欠乏症候群、乳児呼吸窮迫症候群、呼吸器感染等の疾患についての、患者特異的iPS細胞を使用した薬剤スクリーニングを提供する。 第2の一連の実施形態によれば、方法は、終末期疾患肺を置換する移植のために自己のiPSC由来の呼吸器細胞をヒト脱細胞化肺マトリックスへ播種することを含み、それ故、ドナー臓器不足及び免疫学的拒絶を回避する。 第3の一連の実施形態によれば、単離された細胞集団は、肺及び気道上皮細胞並びに肺野に系列決定された細胞が富化されている。いくつかの実施形態において、前記細胞は、NKX2.1、FOXP2、GATA6、P63、ムチン(Mucin)5ac、ムチン2、ムチン5b、FOXJ1、アセチル化チューブリン(acethylated tubulin)+、CC−10、pro−SPC、SPB、ムチン1、リゾチーム、レクチン(lectin) DBA、ポドプラニン(podoplanin)+、アクアポリン(aquaporin)1+、レクチン RCA120+、又はこれらの組み合わせを発現する。いくつかの実施形態において、前記細胞集団は、90%までの肺及び気道上皮特異的細胞を含む。いくつかの実施形態において、前記細胞集団は、80%までの肺野に系列決定された細胞を含む。前記細胞集団は、気管細胞、気管支細胞、肺胞細胞、又はそれらの組み合わせを含む細胞を有する。いくつかの実施形態において、肺野に系列決定された細胞の精製調製物は、NKX2.1、GATA6、SOX2、p63、FOXP2、FOXJ1、又はそれらの組み合わせを発現する。 第4の一連の実施形態によれば、前側前腸内胚葉細胞からの肺野に系列決定された細胞の誘導を増進する方法は、(a)前側前腸内胚葉(AFE)細胞を、少なくとも1日、BMP阻害剤又はTGF−βシグナリング阻害剤と共に培養すること;及び(b)前記細胞を、少なくとも5日間、Wntタンパク質又はその薬理学的アゴニスト(例えば、CHIR99021)、BMP因子、FGFタンパク質、EGFタンパク質、レチノイン酸、又はそれらの組み合わせの存在下で培養することを含む。 いくつかの実施形態において、前記細胞の培養は、Wnt阻害剤及びTGF−βシグナリング阻害剤の存在下で起きる。いくつかの実施形態において、前記細胞の培養は、マトリゲル及び/又は成熟化培地の存在下で起きる。該成熟化培地は、デキサメタゾン、メチルブチリルcAMP、ヒポキサンチン、又はそれらの組み合わせを含む。いくつかの実施形態において、前記工程(b)の培養は、BMP4の存在下又は非存在下で起きる。いくつかの実施形態において、前記工程(b)の培養は、レチノイン酸、デキサメタゾン、メチルブチリルcAMP、ヒポキサンチン、若しくはnotch阻害剤の存在下又は非存在下で起きる。多様な実施形態において、notch阻害剤として、DAPT(ガンマ−セクレターゼ阻害剤)が挙げられる。 いくつかの実施形態において、前記方法は、SHH阻害剤を添加することを更に含む。前記SHH阻害剤はシクロパミン(cyclopamine)である。いくつかの実施形態において、Wnt阻害剤としては、Wnt3a阻害剤又はIWP2が挙げられる。BMP阻害剤は、noggin若しくはドルソモルフィン(dorsomorphin)、又はその他の選択的薬理学的BMP4阻害剤である。前記TGF−βシグナリング阻害剤はSB341543である。 第5の一連の実施形態によれば、細胞は、NKX2.1、GATA6、SOX2、p63、FOXP2、FOXJ1、又はそれらの組み合わせを発現する。肺野に系列決定された細胞は、特徴付けされていない新規のp63発現上皮、杯状細胞、粘膜下腺上皮、クララ細胞、基底細胞、繊毛細胞、I型肺胞細胞、II型肺胞細胞、又はそれらの組み合わせの群を含む。いくつかの実施形態において、肺野に系列決定された細胞は、Muc5a、Muc2、又はそれらの組み合わせ、Muc5b、Muc2、又はそれらの組み合わせ、CC10、p63、アセチル化チューブリン、FOXJ1、又はそれらの組み合わせ、Muc1、SP−B、pro−SP−C、リゾチーム、レクチン DBA、又はそれらの組み合わせ、ポドプラニン、アクアポリン1、アクアポリン5、T1α、レクチン RCA120、又はそれらの組み合わせも発現する。いくつかの実施形態において、BMP因子はBMP4である。前記FGFタンパク質は、FGF10又はFGF7である。 第6の一連の実施形態によれば、肺野に系列決定された細胞の精製調製物は、NKX2.1、GATA6、FOXP2、CGRP、CCSP、FOXJ1、SP−B、SP−C、p63、CC10、MUC5a、MUC1、MUC2、又はそれらの組み合わせを発現する細胞を含む。 以下の図において、説明目的で、多様な実施形態を記述するが、本発明の実施形態は、これらの図で示される詳細により限定されない。本特許出願は少なくとも1つのカラーの図面を含む。in vitroで産生したAFEのin vivoでの潜在能力(a)NSGマウスの腎臓被膜下へ移植したHES2から5週間後に誘導されたテラトーマのH/E染色。3つの右側のパネルは、神経外胚葉(neurectoderm)(神経ロゼット)、内胚葉(腸上皮)及び中胚葉(軟骨)をそれぞれ示す。(b)免疫不全マウスの腎臓被膜下への、NSで誘導したAFE細胞(HES2細胞由来)の移植後、5週間で生じた増殖のH/E染色。(c)FOXA2、PAX9、AIRE及びSurfactant protein C(SP−C)について染色した、(b)の組織の免疫蛍光解析。hPSCからのAFE誘導の概要。図上部のスキームに従って分化させた細胞における、NKX2.5、NKX2.1、FOXA2及びEPCAMの発現。腹側化AFEにおけるSP−Cの誘導。図上部のスキームに従って培養したhPSCにおける、NKX2.1、p63、FOXA2及びMuc5aの発現。WFKBE+RA存在下で腹側化したAFE(図の上部を参照)をDCI及びマトリゲル中に播種した後に得られた球状コロニーにおける、コロニー形態並びにNKX2.1、p63及びFOXA2の発現。NS、NS>SI又はSI>NSと、それに次ぐWFKBE+RAに曝露し、AFEを誘導した後の、NKX2.1(青)及びPAX1(赤)の相対的発現(13日目に解析)。図上部に模式的に示したように、NOGGIN/SB、又はNOGGIN/SBとそれに続くIWP2/SBのいずれかにより産生したAFEの腹側化後のNKX2.1及びFOXA2の発現。AFEの腹側化:(a)パネル上部に模式的に示した2つの条件で産生したHES2由来の細胞における、SOX2、NKX2.1、NKX2.5、PAX1及びP63の発現(n=6培養ウェル(2回の独立した実験から)、* NOGGIN/SB−431542と有意に異なる)(b)パネル上部に模式的に示した条件での、AFEへ分化したHDF2(上部)及びHFD9(下部)hiPS細胞におけるSOX1、NKX2.1及びPAX1 mRNAの発現(n=4〜6培養ウェル(2回の独立した実験から)、* NSと有意に異なる)(c)Activin A、NS及びWFKBEで順次処理した後の、分化したHDF9 hiPS細胞におけるNKX2.1の免疫蛍光。パネル上部に模式的に示した3つの条件で産生したHES2由来の細胞における、NKX2.1、NKX2.5及びPAX1の発現(n=4〜6培養ウェル(3回の独立した実験から)、* 他の条件と有意に異なる)。腹側化AFEの肺としての潜在能力。(a)パネル上部に示した2つの条件で産生したHES2由来の細胞における、PAX1、NKX2.1、FOXP2、GATA6及びFOXJ1の発現(n=4〜6培養ウェル(複数の実験から)、* WFKBEと有意に異なる)。(b)表示した因子の存在下での、腹側化AFEにおけるSP−Cの誘導。(c)WFKBE+ATRA(d11)及びそれに続くWnt3a+FGF10+FGF7(d13)で培養したAFEにおける、13日目のNKX2.1(緑)の発現(青=DAPI)。WFKBE腹側化カクテルへ、ATRAの濃度を増加させて加えたときの、GATA6発現への効果(n=3)。Rockらのプロトコールに従う、マウス気管から単離したNgfr+細胞からの培養の、11及び17日目の球状コロニー。4日目の内胚葉(A)は、4.5日目(B)及び5日目(C)の内胚葉と比較して、肺野細胞(Nkx2.1+FOXA2+)の系列決定について、より高い能力を有する。4日目の内胚葉(A)は、4.5日目(B)及び5日目(C)の内胚葉と比較して、肺野細胞(Nkx2.1+FOXA2+)の系列決定について、より高い能力を有する。培養15日目において、p63+FOXA2−SOX2−Nkx2.1−細胞の群も産生された。これらの細胞は、肺野に系列決定された細胞(NKX2.1+)に隣接する小さな集団として存在するか、又は、培養が低密度であった場合は、NKX2.1+細胞を取り囲む、紡錘状の核を有する線状に並んだ細胞として存在する。培養55日目に、以下の細胞が産生された:(A)cc−10+細胞;(B)ムチン2+細胞;(C)SPB+NKX2.1+細胞;(D)アセチル化アルファ−チューブリン発現細胞。培養48日目に、以下の細胞が産生された:(A)ムチン1+細胞;(B)リゾチーム+細胞;(C)及び(D)レクチン−DBA発現細胞。培養48日目に、CC10+ pro−SP−C+ SP−B+細胞群の富化が観察された。(A)>40%の細胞が、CC10及びpro−SPCダブルポジティブであった;(B)>40%の細胞が、CC10及び成熟SPBダブルポジティブであった。レチノイン酸(ATRA)の濃度を増加させてWFKBE腹側化カクテルへ添加したときの、Nkx2.1及びFOXA2発現における効果。腹側化の間のRAの用量は重大な意味をもち、50μMが最適であると決定した(培養15日目のNkx2.1+FOXA2+細胞の産生量により示される)。 発明の詳細な説明 毎年、米国では、400,000人もの人々が肺疾患で死亡する。しかしながら、肺は多数の異なる細胞種を含む非常に複雑な臓器であり、肺疾患の再生医療は未成熟である。多くの終末期肺疾患では、移植が有効な治療の選択肢であるが、ドナー臓器の低い利用可能性、並びに外科的、内科的、及び免疫学的合併症により妨げられる。それ故、肺疾患に対する細胞置換治療の新規アプローチが必要とされている。ヒト多能性幹細胞から肺及び気道の上皮細胞が誘導されたことはなかった。AFE及びその誘導体を産生する効率的なプロトコールの報告は、Greenらによるものが最初であった。LongmireらはマウスNKX2:GFPレポーター(これはヒトhPSCには適用できない)を使用し、その効率は最大で20%であった。Mouらは、マウスにおいて、肺野上皮の産生について10〜15%、推定に過ぎない近位気道細胞への更なる分化について5%未満の効率を達成したが、それとは対照的に、ヒトにおける本発明の系においては90%である。 細胞を基盤としたアプローチを使用する治療は極めて有望であるが、実行するのは困難でもある。1つの研究(その結果については議論の余地があるが)を除き、いかなる種類の幹細胞又はその子孫も、肺傷害動物モデルの肺において生着することは未だ可能となっていない。 呼吸器系の幹細胞は多様な応用を有する:(1)組織修復:終末期疾患肺を置換する臓器移植のために、自己iPSC由来の肺及び気道の細胞を脱細胞化した肺マトリックス内へ播種した人工肺を使用する;(2)疾患モデル化:hPSCからin vitroで産生した肺及び気道の上皮は、先天性及び後天性ヒト肺疾患の優れた研究基盤である;(3)薬剤スクリーニング:肺上皮を産生するために使用されるhPSCの無制限の自己複製能を利用することにより、十分な数の生物学的に関連する患者特異的細胞を、ハイスループット薬剤スクリーニングのために、産生することが可能である;並びに(4)肺発生のメカニズムの解明:出生後の気管気管支及び肺幹細胞の特徴的性質及び機能への貴重な洞察を与える研究により、ヒトの発生を具体的に調べるin vitroモデルが提供される。 この分野における最初のステップは、幹細胞から肺の様々な細胞種を産生する戦略の開発、及びその根底にあるメカニズムを理解することである。可能性のある代替的なアプローチは、脱細胞化した肺マトリックス内で再構築した組織を使用して、罹患した肺及び気道の、成体幹細胞又はhPSC由来細胞のいずれかによる置換を達成することである。ラット肺は穏やかな界面活性剤で灌流することで脱細胞化することができ、胎生期又は新生仔の、気道側の肺細胞懸濁液、及び血管側の内皮細胞を用いて再細胞化できることが最近示された。 ES細胞 胚性幹(ES)細胞は、胚盤胞の内部細胞塊に由来し、特定の条件下において多能性状態で維持することが可能である。理論により縛られるものではないが、ES細胞は全ての体細胞種及び生殖細胞種へ分化することができる。従って、ESを様々な細胞種及び組織へ分化させる適切な条件の開発は、未来の細胞置換治療に対し大いに有望である101。発生は原腸形成過程で開始する(この間に、胚盤胞の内部細胞塊の未分化細胞が三胚葉(ここから体の全組織が発生する)へと分化する)。例えば、ES細胞は、最終的に、腸、肝臓、膵臓、肺、食道、咽頭器、甲状腺、副甲状腺、及び胸腺等を発生する、内胚葉へ分化し得る。或いは、ES細胞は、最終的に、筋肉、骨、脂肪組織、結合組織、泌尿生殖系、及び心臓血管系等を発生する、中胚葉へ分化し得る。最後に、ES細胞は、更に最終的に、皮膚、神経系、及び神経堤等を発生する、外胚葉へ分化し得る。比較的単純な手順を使用して成体体細胞を多能性状態(人工多能性細胞、又はiPS細胞)に初期化できるという最近の発見102−106は、患者特異的多能性細胞(それは、拒絶の問題、及びhES細胞由来組織の使用に関する倫理的問題を打開するであろう)の産生への道を開く。 肺発生 内胚葉からの肺発生は、主に、時間的・空間的に厳密に制御された6つのシグナリング経路の活性化及び阻害の組み合わせにより駆動される:BMP/TGF−β、FGF、Wnt、レチノイン酸(RA)、Hedgehog(HH)及びNotch98,99,116。これらのシグナルは、部分的には周囲の間充織及び血管系から発せられ、また部分的には、発生中の肺組織自身から発せられる。Gata6、FOXA2、SOX2及びNKX2.1は、肺及び気管気管支発生についての転写制御因子である98,99,116。肺は、前側前腸内胚葉(FOXA2+SOX2+)の腹側面(NKX2.1の発現をマーカーとする領域)から発生する。マウスにおいてはE9.5で、気管原基及び2つの肺原基が、内胚葉性原始腸管の腹側面から分離する98,99。分岐形態形成の複雑な過程を介して、気道が発生する108。これに続き、肺胞の形態形成が起きる(部分的には出生後に進行し、規定の偽腺期、嚢状期及び小胞期を経る)98,99,116。出生後初期発生の間に、広範な再生能を提供する肺及び気管気管支幹細胞も定まる100,107。肺発生及び出生後肺幹細胞の更なる関連する詳細は、必要に応じて本出願において更に議論される。発生のパラダイムに従えば、気管気管支細胞及び肺胞細胞を産生するためには、hPSCを初めに内胚葉に分化し、次いで、AFEへ決定すべきであると推論できる。次に、肺野を誘導し、それに続いて、後期胎生期及び出生後の呼吸器系の細胞種及び構造へと分化させる必要がある。 肺 呼吸器系は、ガス交換に重大な意味をもち、肺胞の複雑な分岐系(同様に分岐した血管系と比肩される)から成る。ヒトにおいて、気管及び気管支は偽重層上皮(繊毛細胞、粘液細胞、分泌(クララ)細胞、神経内分泌細胞及び基底細胞を含む)により裏打ちされる。肺胞は、2種の細胞に裏打ちされる:I型肺胞上皮細胞及びII型肺胞上皮細胞(ATI細胞及びATII細胞)。ATII細胞はサーファクタントを産生する98,99。 肺は、気管支及び細気管支の複雑な分岐系からなり、それはガス交換が起きる肺胞で終結する98,99。従って、自己細胞から肺組織を再生できれば、大きな医学上の前進となるであろう100。これを達成するための1つの方法は、多能性幹細胞の、多様な呼吸器上皮細胞への、及び/又は、呼吸器系の推定上の出生後幹細胞への分化であり得る100,101。2種の多能性幹細胞が存在する。先に述べたように、ES細胞は胚盤胞の内部細胞塊に由来し、ヒトとマウスの両方で、特定の条件において、多能性状態で維持することが可能である101。人工多能性状態細胞(iPS細胞)は、3〜4遺伝子をレンチウイルス又はレトロウイルスにより発現させることで体細胞を多能性状態へ初期化したものである102−106。iPS技術は、拒絶の問題及びES細胞由来組織の使用に関連する倫理的問題を打開するであろう、患者特異的多能性細胞の産生へ道を開く102。AFE AFEは内胚葉で最も前側の部分である。胚発生の間、前側及び咽頭内胚葉の形成は、ボディプランの確立及び多様な臓器系(耳、口蓋扁桃、胸腺、副甲状腺、甲状腺、肺、食道、及び気管、の一部等)の発生における重大な段階である。その形成に続いて、胚体内胚葉は内胚葉下位系譜へ分化が進行する。より後側の内胚葉は中腸及び後腸を生じる。咽頭内胚葉(肺野の前側)は、咽頭嚢と呼ばれる4つの露出部を形成する。それぞれの嚢は、特定の臓器へ発生する(例えば、耳管及び鼓膜のインナーリーフレット(inner leaflet)(第1嚢)、口蓋扁桃(第2嚢)、胸腺(前側第3)、副甲状腺(背側第3及び第4嚢)、並びに甲状腺の傍濾胞C細胞(第4嚢))。甲状腺は咽頭の底部から発生する。肺、食道、及び気管は、嚢の遠位のAFEに由来する。 咽頭内胚葉(胸腺を含む)及び肺原基は両方ともAFEに由来する。肺組織への定方向分化は、最初にES細胞を胚体内胚葉へ分化し、次いで、その最も前側運命へパターン形成することで進行するはずである。中腸及び後腸組織(膵臓、肝臓、腸管)の誘導はより成功しており、一方、AFE臓器運命の誘導は、興味の欠如ではなくむしろ困難性から、遅れをとっている。AFEは、腸管、肝臓、膵臓、胃、食道、肺、咽頭器及び甲状腺も生じる、胚性胚葉である。いくつかの重要な臓器(肺及び胸腺を含む)はAFEに由来するので、AFEの重要性は大きい。 初めに、高濃度のActivinA(100ng/ml)を使用してhPSCから胚体内胚葉を誘導し、続いて、BMP阻害剤(Noggin及びドルソモルフィン等)(NS又はDMS)及びTGF−βシグナリング阻害剤(SB341543等)存在下で細胞を培養することで、AFEを産生した。NSで2日間培養した後、細胞を、Wnt3a又は小分子GSK阻害剤、BMP4、FGF10、FGF7及びEGFからなる、腹側化条件に供した。これらの条件において、およそ40%のNKX2.1+細胞(肺野への系列決定の指標)を含む、腹側AFEが得られる。肺及び気道の上皮を、ヒト多能性幹細胞(胚性及び人工多能性状態幹細胞)由来のAFEから産生した。 別段定義されていなければ、本明細書で使用する全ての技術的及び科学的用語は、本発明の属する分野における当業者により、通常理解されるのと同一の意味を有する。例示的な方法および材料を以下に記載するが、本明細書に記載の方法及び材料と類似又は同等の方法及び材料も、本発明の実施又は試験において使用することができる。 本明細書で述べる、全ての特許、特許出願及び刊行物並びにその他の参照は、個々の刊行物又は参照が、参照することにより組み込まれると具体的且つ個別に示されたかのように、参照することによりその全体が組み込まれる。本明細書で挙げた刊行物及び参照が先行技術であると認めるものではない。 本発明のより完全な理解を促進するために、以下に実施例を提供する。以下の実施例及び仮想実施例は、本発明を製造及び実行する例示的な態様を説明する。しかしながら、本発明の範囲は、これらの実施例で開示する特定の実施形態に限定されるものではなく、代替的な方法を用いて同様の結果を得ることができるため、それは単なる例証目的に過ぎない。 本発明の特定の実施形態は、ヒト多能性幹細胞(hPSC)からの、肺及び気道の上皮細胞の分化誘導法を対象とする。本発明の実施形態は、肺野に系列決定された細胞(NKX2.1+)に富んだ細胞集団を更に提供する。 特定の実施形態において、hPSC由来のAFEから肺及び気道の上皮を誘導するために、以下の培養条件を開発した。 (1)肺野に系列決定された細胞(NKX2.1+)の生産量を増加するために、初期及び後期内胚葉(即ち、ActivinAを含む培地中で、それぞれ、3、3.5及び4日間培養した)を、肺への特異化の能力について試験した。初期内胚葉は、後期内胚葉(たった10%のNKX2.1+細胞の効率を有する)と比べ、50〜60%高い効率で、NKX2.1+細胞を産生した。 (2)肺野に系列決定された細胞(NKX2.1+)の生産量を増加するために、前側化条件(NS)を改良し、初めにNSを1日適用し、その後TGF−β及びWnt阻害(SB及びIWP2を使用)の組み合わせを適用することで、前側化を行った。これは、神経又は甲状腺分化の証拠無しに、15日目に80%の効率でNKX2.1+産生をもたらす。 (3)培養15日目に、上記条件を用いて、p63+FOXA2−SOX2−Nkx2.1−細胞群も産生した。これらの細胞は、肺野に系列決定された細胞(NKX2.1+)に隣接する小さな集団として存在するか、又は、培養が低密度であった場合は、NKX2.1+細胞を取り囲む、紡錘状の核を有する線状に並んだ細胞として存在した。 (4)培養15日目に、細胞を穏やかにトリプシン処理し、BMP4及びレチノイン酸の有り又は無しで、Wnt3a又はGSK阻害剤、FGF10、FGF7を含む培養条件で再播種した。10〜40日間の更なる培養後、以下の細胞種を観察した:杯状細胞(Muc5a+、Muc2+);粘膜下腺上皮(Muc5b+、ムチン2+);クララ細胞(CC10+);基底細胞(p63+);繊毛細胞(アセチル化チューブリン+、Foxj1+);II型肺胞細胞(Muc1+、pro−SP−C+、SP−B+、リゾチーム+、レクチン DBA+);及びI型肺胞細胞(ポドプラニン+、アクアポリン1+、レクチンRCA120+)。 データは、BMP4及びレチノイン酸の添加が、気道基底細胞運命の初期決定を助けることを示した。全体として、>90%の細胞が、気道又は肺上皮細胞種に決定された。 (5)培養25日目に、ガンマ−セクレターゼ阻害剤DAPT(notchシグナリングを阻害する)を、BMP4及びレチノイン酸の有り又は無しで、Wnt3a又はGSK阻害剤、FGF10、FGF7を含む条件に添加し、20〜25日間の更なる培養の後、CC10+ pro−SP−C+ SP−B+細胞群の富化を観察したところ、notch阻害剤DAPT、Wnt3a又はGSK阻害剤、FGF10及びFGF7を含む条件において、>40%の細胞がトリプルポジティブであった。 (6)培養25日目に、成熟化成分(デキサメタゾン、メチルブチリルcAMP及びヒポキサンチン)を、BMP4及びレチノイン酸の有り又は無しで、Wnt3a又はGSK阻害剤、FGF10、FGF7を含む条件へ添加することで、20〜25日間の更なる培養後、SPB+Nkx2.1+細胞集団が富化される。 (7)マトリゲル及び成熟化培地(デキサメタゾン、メチルブチリルcAMP及びヒポキサンチン)の存在下での腹側化AFEの培養は、球状構造を生じた。該球状構造は、様々な近位気道マーカーを発現し、おそらく発生上の気道前駆細胞に由来するものであった。 実施例1:肺野に系列決定された細胞の誘導 本実施例は、iPSCのESCのいずれか(either ESCs of iPSCs)であるhPSCからの、肺及び呼吸器系細胞種の産生を記述する。呼吸器系の多様な細胞種を産生する能力は、発生上の肺の異常に対する薬剤試験、及び肺発生における薬剤の催奇性効果を試験することを可能にする。 多能性細胞を発生中の肺の最も初期段階へ分化することは、これまでは不可能なことであった。高効率及び高純度で、これらの細胞を肺及び気道に属する初期の細胞へと分化させることに成功した。これらの細胞は、少なくともいくつかの成熟肺及び気道細胞マーカーを発現する細胞へと更に分化した。このモデルは、肺疾患の再生治療のため、並びにヒト肺発生及びヒト肺疾患の根底にあるメカニズムのより良い理解を得るための、新たな道を提示する。 ヒト多能性幹細胞から呼吸器細胞を産生する能力は、呼吸器系のヒト発生生物学を探究する新たな道を開き、発生上の肺異常の治療のための薬剤試験、及び肺発生における薬剤の催奇性効果を試験することを可能にするであろう。適切な後期胎生期、出生後細胞種への分化は、発生における連続的な段階がin vitroで再現されることを示唆する(定方向分化と呼ばれる戦略)。肺は内胚葉(より具体的には、腹側前側前腸内胚葉)に由来する。本実施例は、高度に富化したAFEがヒト多能性幹細胞から産生されたことを示す。更に、この組織は、肺原基を生じる肺野に対応するマーカーを発現するように系列決定された。その後、近位(気道)又はより遠位(肺胞)の細胞運命を助ける条件を定めた。重要なことに、AFEを産生した条件がその後に肺マーカーを発現する潜在能力を決定したことも観察され、このことは、内胚葉発生中の早期の事前系列決定(prespecification)を示唆している。得られた細胞及び組織を機能的に調べるため、及びヒト肺発生メカニズムの理解を得るために、条件を更に最適化した。 本実施例では、肺の内胚葉区画(即ち、気管、気管支及び肺胞の上皮細胞)、及びこれらの構造に関連する推定上の出生後幹細胞をhPSCから産生する戦略を探索した。更に、初期ヒト肺発生に関与するメカニズムを発見するために、このモデルを使用した。適切な後期胎生期又は出生後細胞への分化は、定方向分化を使用した。肺はAFEの腹側面(ここから気管原基及び2つの肺原基が分離する)から発生する1,2,98,99。複雑な分岐の過程3,108、その後の肺胞形態形成1,2,98,99を介し、気道及び肺胞が発生する。胚体内胚葉の効率的な誘導、並びに後側前腸、中腸及び後腸由来臓器(肝臓、膵臓、及び腸管)への様々な程度での分化は4−9,109−113、定方向分化を介して達成されているが、当該分野では、肝臓の近位にある内胚葉組織を産生することはできていない100,114。もっともらしい理由として、多能性幹細胞からAFEを効率的に決定することが不可能であったことが挙げられる。更に、AFEは、腹側AFEの肺野に対応する細胞へ系列決定することが可能で、培養物が実質的に均一に呼吸器系の細胞からなるような条件を同定した。それ故、これらの条件を更に最適化すること、及びこのモデルを使用し、AFEの肺への運命決定の根底にあるメカニズムのより良い理解を得ることが可能であった。 発生上のパラダイムに従えば、気管気管支及び肺胞細胞、並びにhPSCは、初めに内胚葉へ分化し、続いて、AFEへ系列決定されるはずである。次に、肺野が誘導され、その後、後期胎生期及び出生後呼吸器系の細胞種及び構造体へ分化する必要がある。 腹側前側前腸内胚葉の産生 分化しているES細胞を高濃度のActivinAへ曝すことからなる、刊行された内胚葉を誘導する戦略は25−27、後側に偏った結果をもたらした(おそらく、前腸組織とは対照的に、なぜ中腸及び後腸組織(膵臓、肝臓、腸管)の誘導25−27がより成功しているのかを説明している)。しかしながら、胚体内胚葉を、NOGGIN(BMPシグナリングの生理学的阻害剤)及びSB−431452(ActivinA/nodal及びTGF−βシグナリングの薬理学的阻害剤)の組み合わせ(NOGGIN/SB−431542又はNS)へ、続いて曝露することで、前腸マーカーSOX2の発現、後側マーカーCDX2の抑制、及び内胚葉マーカーFOXA2の維持をもたらすことが、モルフォゲン選別により明らかとなった31,32。90%を超える細胞が、このステージで、FOXA2及びSOX2を発現した。 hPSCからの腹側AFE産生プロトコールの概要を、図2に示す。in vitro分化スキーム(図2及び図3に図示)は、in vivoで起きる肺前駆細胞の階層的及び連続的誘導を再現する。AFEの他の運命を遮断することで肺野細胞の産生量を高め、更に、肺前駆細胞を成熟化させ、主要なタイプの肺(ATI及びATII)並びに気道上皮細胞(基底細胞、クララ細胞、繊毛細胞及び杯状細胞)をhPSCから系列決定することを目的とした。 咽頭内胚葉に対する肺野への優先的決定10 NS誘導AFEのWFKBEへの曝露は、咽頭及び肺マーカーの両方の発現の増加をもたらした。従って、咽頭運命よりも肺に有利となる条件を決定した。WFKBE+RAは肺野へバイアスさせ、一方で、WFKBEは咽頭器運命を助ける。肺への系列決定におけるレチノイン酸の役割は、腹側化AFEの後側化、及びTBX1シグナリングの阻害による咽頭嚢形成の阻止を示す。これらの条件において、実質100%の細胞がNKX.2.5を発現し、その大部分が、FOXA2及びEPCAMも発現した(図3)(腹側AFEの一群の典型的マーカー)。島状の細胞がNKX2.1を発現した。NKX2.1を発現する細胞の高密度コロニー間に散在して、扁平なNKX2.5+FOXA2−細胞が生じた(図3)。これらは血管平滑筋アクチンを発現し、従って、中胚葉性であった(図3)。19日目までの継続したWFKBE+RAでの処理は、低レベルの成熟ATIIマーカー(SP−C)を生じた(図4)。 近位vs遠位肺運命の誘導 WFKBE+RAで継続的に培養した細胞の運命を調べたところ、SP−Cは誘導されなかった。再播種し(13日〜15日目)、23〜33日目までこれらの条件で継続的に処理したところ、全ての中胚葉性細胞が消失し、管状構造を含む、細胞が高密度に充填したコロニーからなる培養物となった(図5)。これらのコロニーは全体的にFOXA2+であり、一方、外縁部のものを除き、ほとんどの細胞はNKX2.1を発現した。上記管状構造はムチン(MUC2(図示せず)及びMUC5a(図5))を発現した。主に外縁部では、気道基底マーカーp63を発現した(図5)。前記構造のより中心部に向かうと、p63及びNKX2.1が共発現し(図5中央のパネル)、p63+細胞のNKX2.1+細胞への分化を示唆する。 その後、上記細胞を、デキサメタゾン、ブチリルcAMP及びイソブチルメチルキサンチン(DCI)からなる成熟化培地50中で3日間培養した。これらの条件で、FOXA2、NKX2.1及びp63を発現する大きな球状構造が形成された(図6)。これらの構造は、成体気管から得られるトラキオスフェア(tracheospheres)51と非常に類似している。このステージの細胞は、完全に呼吸器に運命決定されているが、まだ比較的初期の発生ステージにある。産生に成功した肺野細胞を、脱細胞化したヒト肺足場へ播種した。予備的データは、播種した細胞が足場上に整列し、Nkx2.1及びp63を発現することを示す。 AFEの事前系列決定 ActivinA誘導後にNSを添加することでAFEが決定されるという観察は比較的偏りのない選別に従って為されたが、このプロトコールは発生的に理にかなっている。ほとんどのAFEは、初めに原始線条を通過し、その後結節を離れる細胞に由来する54。故に、内胚葉のこの部分は、最も長時間、胚盤葉上層のnodalシグナリング領域から最も遠く切り離れている55。これは、ActivinAへの曝露期間後のTGF−βシグナリングの遮断が、なぜ内胚葉のこの部分を決定することに関与するかを説明する。その前側遊走の間、AFEになることを運命付けられた細胞は、Nogginを発現する領域を通過し55、これはBMPシグナリングを遮断することが望ましいこと(desireability)の説得力のある説明を与える。興味深いことに、その後、最も前側に運命付けられた細胞は、Wnt阻害剤(Dkk1)に曝露された55。これらの細胞は、その後、腸管が形成されるときに腹側に折り重なり、最も前側の内胚葉は最終的に腹側に行き着き、そこで肺原基が起こる54,55。 Wntシグナリングの阻害が、肺野のより詳細な系列決定をもたらし得るかを試験した。NS(6日目)、続いてSB+IWP2(Wnt阻害剤)(SI、7日目)を順次適用することで、腹側化後、13日目におけるPAX1 mRNA(咽頭内胚葉)のNKX2.1 mRNAに対する比率は増加した。これらの知見と一致して、NKX2.1+細胞の数は、NSとそれに続くSIによるAFE誘導後に、NS単独の場合よりも多かった(図8)。更に、NOGGIN/SBとそれに続くSB+IWP2(NS>SI)の使用によるAFEの誘導後、AFEを5日目にNSのみを使用することで誘導したときよりも、DCI存在下の19で、より多くの球状構造が得られた。より詳細な研究及び定量化が望まれるが、これらのデータは細胞の分化の経緯がそれらの将来の可能性を決定することを示し、おそらくそれは、後でより肺への系列決定をしやすくするエピジェネティック状態に細胞を固定することによる。これらの観察は、呼吸器系譜への定方向分化戦略の開発に重大な意味をもち、内胚葉発生の間のエピジェネティック制御及び事前系列決定に関する基本的な問題を提起する。 呼吸器系細胞の誘導のための条件最適化 qPCR、及び可能であれば、蛍光及び共焦点顕微鏡を使用する。その後の肺への系列決定で最大の可能性を達成するために、AFE誘導についての最適化因子を決定した。遠近位決定に関与する因子を解析した。これらが確立されれば、培養で産生される系譜を操作することができる。 幹細胞集団が生着することが説得力をもって示されている認められた肺損傷モデルは現在ないため、免疫不全マウスの腎臓被膜下への移植をin vivoアッセイとして使用した。免疫不全マウスの腎臓被膜下へのNS誘導AFEの移植の後、多くのSP−C+管構造及び偽重層上皮を有する構造が観察された(図1b、c)。これらのデータは、in vitroで産生したAFEがin vivoでの有意な肺としての潜在能力を有することを示唆し、また逆に、この解析が比較的効率的に、移植した細胞の肺としての潜在能力を明らかにすることを示唆した。この知見も、腎臓被膜下へのE11.5マウスの胎生期肺の移植が、肺胞発生の偽腺期及び細管状期を通じた分化を可能にしたという観察と一致する56。 この過程の間、移植された血管は内に伸びるホストの血管と結合した56。更に、最近になって、出生後肺幹細胞集団を、E14胎生期肺から産生した細胞懸濁液と混合することで、腎臓被膜の移植後に、成体幹細胞に由来する肺胞形態形成の痕跡を含む構造を生じることが示された57。 細胞のin vivoでの潜在能力が生じるかを決定することができる。従って、特定の実施形態において、以下のことが行われる。106細胞を4℃のマトリゲル(4μl)中に溶かし、37℃で凝固させ、免疫不全NSGマウスの腎臓被膜下へ移植する。5匹のマウスの群を、各条件及び分化ステージについて、それぞれ移植から4週後及び8週後に解析することが可能である。解析は、気道上皮細胞(FOXJ1、CCSP、CGRP、MUC5a、p63)、肺胞細胞(SP−C、T1α、AQ5)の染色からなる。更に、GCM2(副甲状腺)、PAX9及びTBX1(咽頭嚢)、Calcitonin(C細胞)、並びにAIRE(胸腺)の染色により、他の運命を調べることが可能である。もし成長が観察されなかった場合、他の細胞からの支持が関与している可能性がある。その場合、試験される細胞集団をE14胎生期肺細胞懸濁液と混合するChapmanらの解析57を採用することが可能である。 AFEから肺野を誘導する因子 事前系列決定。細胞をNS、その後SI(NS>SI)に連続的に曝露することで、AFEを誘導するとき、NKX2.1のより良い誘導が、1週間後、腹側化後に達成されることをデータは示した。これらのデータは更に、AFEが形成されるときには肺原基運命はすでに決定されている可能性があることを示した。いくつかの実施形態において、以下のことが行われる。 1.NKX2.1+FOXA2+細胞の絶対数及び富化に関するこれらのデータの更なる定量化を行うことが可能である。 2.Wnt、BMP及びTGF−βの阻害を組み合わせたNS>SI様式が最適であることを決定した。並びに 3.事前系列決定がその後の近位及び遠位肺細胞種への分化にいかに影響するかを決定することが可能である。NS存在下よりもNS>SI存在下においてAFEを誘導した場合にDCI誘導性の球状構造がより効率的に産生されるという証拠を我々は既に有しているためである。 他の実施形態において、以下のことが行われる。AFEは、NS、SI、NS>SI、NSI、又はSI>NS存在下において誘導することが可能である。続いて細胞をWFKBE+RAを使用して腹側化することで、肺原基同等物へと系列決定することが可能である。13−15日目に、培養物をWFKBE+RAの継続(推定上の近位肺)又はWFK(推定上の遠位肺)に分けることができる。23日目に、最終成熟化のために、DCI条件を適用可能である。これらの培養の複製物を、培養の様々なステージで解析することが可能である。それぞれのステージにおいて、サイトスピン調製物を使用して、細胞数、NKX2.1+、FOXA2+及びp63+の細胞画分を定量可能である。更に、投入細胞数の単位あたりのDCI誘導球状物の数を評価可能である。最後に、本明細書に記載のマーカーについてqPCR及び染色を行うことが可能である。 近遠位分化に関与する因子 WFKBE+RA中での培養を継続することでより近位の運命に導き、一方で、13から19日目の間で、BMP4及びRAが除かれた条件へと切り換えることで、より遠位の運命を誘導した(SP−Cの誘導により証明された)。しかしながら、肺発生の間の運命決定はかなり複雑であり、あまりよく理解されていない。分岐形態形成の間、先端部で多能性前駆細胞が再生する1,2,63。柄部分に残された細胞は気管気管支上皮へと分化した。細管状/嚢状期が開始するとき、遠位細胞は肺胞細胞への分化を開始する1,2。AFEの腹側化後のWnt3a、FGF7及びFGF10の適用は、19日目に多量のSP−C mRNAを誘導する。より長期の培養によってタンパク質が発現することが見込まれる。これらの条件は偏りのない選別において同定されたが、FGF10及びWntシグナリングは遠位運命を確立するため、発生的に理にかなっている45−49。いくつかの実施形態において、以下を行う。 1.我々の培養の全ての因子が望ましいかの決定、及びそれらの濃度が最適化可能かの決定(多くのモルフォゲンは濃度依存的な効果を示すので)を行う1,63。 2.Wntシグナリングは、遠位運命を確立するのに発生上重要であるので45−47、近位条件において、Wntを除くことが近位運命を増進する可能性がある。 3.非標準のWnt(Wnt5a)も、おそらくSHH及びFGF10シグナリングの制御を介して、肺発生において役割を果たし、確認試験を行うことが可能である65,66。 4.発生初期のシグナリングにおいてNotchを遮断することも、より遠位運命を促進する67。これはガンマ−セクレターゼ阻害剤DAPTを使用することで成された。 5.DAPTはpro−SPC(SPCの前駆体)発現細胞を増大した。RAシグナリングの下方制御がAT細胞の終末分化に関与する57。しかしながら、RAの役割は複雑である。RAはin vivoにおいてWnt、FGF10及びBMP4の発現に影響し、従って、間接的な効果を有する44。更に、RAは出生後の肺胞発生を増強するようである68。最後に、副腎皮質ステロイド、ブチリル−cAMP及びイソブチルメチルヒポキサンチン(DCI)が肺の成熟化を増進する50,69。この条件は、我々の「近位」条件からトラキオスフェアに類似した構造の発生を誘導した。 6.より近位の運命を決定する条件を洗練した時点で、追加の因子がこれらの近位領域の分化に影響するかを決定した。Notchシグナリングは、クララ細胞運命を助けることで、気管支樹の3つの成熟細胞種間での運命選択を決定し70、基底細胞の分化を制御する71。故に、DAPTによるNotchシグナリングの阻害効果は興味深かった。我々は、DAPTがCC10+spb+pro−SPC+細胞の富化を助けることを見出した。これは、Notchを内胚葉部分で遮断することが遠位(近位とは逆に)運命を助け、一方、Notchシグナリングを間充織において遮断することで繊毛細胞運命を促進するという文献と一致する。SHHは、間充織によって媒介されていないであろう直接の効果を介して、神経内分泌細胞の分化に影響する60。従って、SHHシグナリングの遮断又は増強の両方がin vitroでの分化に影響し得る。 7.分岐形態形成を制御する因子を調べることが可能である。hPSC由来細胞の分岐形態形成をモデル化し得る条件の確立は、本分野における大きな前進となる。更に、前駆細胞は成長中の分岐の先端部で再生するので、分岐形態形成の刺激と、それに続く、肺胞分化のための適切な刺激の適用は、成熟細胞の産生量を増加するための道を開き得る。EGF及びHGFは両方とも、コラーゲンゲル培養において、乳腺上皮前駆細胞による分岐形態形成を誘導する72,73。更に、分岐している乳腺上皮細胞の柄部分で産生されるTGF−β1は分岐を阻害し、一方、TGF−βの阻害は分岐を促進する72。いくつかの実施形態において、以下を行う。EGF、HGF、SB−431542、又はそれらの組み合わせの添加が、細胞外マトリックス(ECM)包埋培養において分岐(もしあれば)を増強するかを試験することが可能である。 推定上の出生後肺幹細胞の検出 出生後肺幹細胞 発生が進行するにつれて出生後肺前駆細胞が定まるが、推定上の肺幹細胞の特徴的性質(主に損傷後に機能するようである78)は不明確である11,12,75,79−87。気管支肺胞の接合部での局在により定義される一種の幹細胞(気管支肺胞幹細胞(BASC))が同定されている81。この細胞はSP−C(ATIIマーカー)、及びCCSP(クララ細胞マーカー)を両方とも発現する81。しかしながら、系譜追跡は、肺胞がCCSP+又はSP−C+細胞からは再生されないことを示唆する57,84。in vitroで気道及び肺胞細胞を生じることができる、CD49f+(integrinβ6)CD104+EpcamhiCD24lo表現型を有する肺幹細胞についての証拠が出版されている86。他の論文でも同様に、稀なα4β6(CD49f+)細胞を肺幹細胞として示し、該細胞を終末細気管支及び肺胞に位置付けた57。これらの推定上の出生後肺幹細胞は、少なくともCD49fの発現を基底細胞と共通して有する51。該細胞はin vitroで嚢状及び嚢胞状コロニーを形成することができる。興味深いことに、FGF10がこれらに関与したが、BMP−4によって阻害された86。理論に縛られるものではないが、細気管支のp63+細胞は、少なくともインフルエンザ感染後、肺胞を修復するために肺の間充織を遊走する87。p63+細胞によって囲まれた、NKX2.1+FOXA2+構造が産生された。しかしながら、マウス細気管支において、ほとんどの繊毛細胞はクララ細胞に由来する84。気管において、クララ様細胞は条件的な通過性の増幅細胞として機能するらしく、一方、ほとんどの再生能は基底細胞に由来する(それは、上皮の30%を形成し、少なくとも一部の細胞ではNgfr及びCD49fを発現し、in vitroでいわゆるトラキオスフェアを形成することができる)51。別のタイプの基底細胞がCD49f+Sca1+ALDH+表現型により同定されており、それは、いわゆる「縁付き」コロニーをin vitroで形成する85。 我々は、気管支肺胞幹細胞(BASC)に非常に類似した細胞を我々の培養物中に同定した。他の出生後肺幹細胞、又は胎生期幹細胞に類似する、産生された任意の細胞が、再生、増殖及び分化可能かどうかを決定する。患者特異的iPSCからのそのような細胞の産生は、肺の再生医療への鍵となる可能性がある(例えば、脱細胞化した肺マトリックス上に播種することによって)。 アプローチ 分化後のNKX2.1、FOXA2及びp63を発現する球状コロニーが、3日間DCIを使用することで得られた。興味深いことに、このステージでの刊行された「トラキオスフェア」条件51の適用では、球状物の形成を誘導せず、一方、我々はこれらの条件を使用して、成体マウスの気管からのトラキオスフェアを産生することができた。更に、より成熟した細胞のマーカー(ムチン5aを除く)は、これらの構造中にまだ存在していなかった。これらのデータは、それらが比較的初期の前駆細胞から生じ、完全成熟を果たすのに十分な期間培養されていないことを示す。これは、単純に、該細胞をより長期間培養することにより確認されている。前記細胞の再播種及び分化の潜在能力を更に調査する。 上記コロニーを分離し、同様の条件(DCI)又は成体気管からのトラキオスフェア産生のための刊行された条件51のいずれかに再播種した。コロニーを、2Dで、p63、Muc5a、FOXJ1、アセチル化チューブリン(繊毛細胞)、CCSP(クララ細胞)、及びCRPP(神経内分泌細胞)、SP−C(ATII細胞)、T1α、AQ5(ATI細胞)の発現について解析した。いくつかの実施形態において、以下を行う。解析は3D球状培養において実施することが可能である。その後の再播種により、より成熟なマーカーの発現が現れる可能性がある。或いは、分化の潜在能力は、これらのコロニーの前駆細胞が更に発生したときにのみ獲得される可能性がある。DCI又はトラキオスフェア条件に播種する前に、分化している細胞を、2D培養上で、(近位の)WFKBE+RA又は(遠位の)WFK条件により長期間曝露した。いくつかの実施形態において、解析は3D球状培養において実施可能である。 成体マウス基底幹細胞を維持する刊行されたトラキオスフェア培養系の確立に成功した。16日目の肺前駆細胞の刊行されたトラキオスフェア条件での培養は、球状物の形成を誘導せず、一方、成熟化成分DCTの存在下、16日目の肺野細胞を3Dマトリゲル中で培養することで球状物が産生された。DCIを3日間使用した分化の後、球状コロニーはNKX2.1、FOXA2及びp63を発現した。 AFEのWFKBE+RAへの曝露及び15−19日目での再播種の後、管状構造を含み、Muc5a陽性で、p63+細胞により囲まれたコロニーを得た(図5)。これらの細胞の副画分は、マトリゲル及びDCI培地に播種した後、球状物を発生した(図6)。辺縁のp63+NKX2.1+細胞はこれらのコロニーにおいて、より原始的な細胞であった。いくつかの実施形態において、以下を行う。肺の幹細胞に関連する表面マーカー(NGFR、CD49f、EPCAM、CD24、ALDH(比色染色ALDEFLUORを使用し検出される))について、細胞集団を解析することにより、見込みのある推定上の幹細胞を単離することが可能である51,85,86。これは球状物形成前の培養、及び球状物それ自体のどちらにおいても行うことが可能であり、フローサイトメトリー及び免疫蛍光法によって行うことができる。理論に縛られるものではないが、コロニー辺縁のp63+細胞、及び球状物を裏打ちしている細胞は、幹細胞マーカーを発現する(特に、肺幹細胞の同定に関する最近刊行されたデータを考慮すれば、α6β4 integrin(CD49f))。興味深いことに、いくつかの推定上の肺幹細胞マーカーは、ヒト乳腺幹細胞を単離するのにも使用される。これらとしては、EPCAM(しかしながら、ヒト乳腺幹細胞はEPCAM−である)、CD49f、CD24及びALDH1が挙げられる88。発生中の肺及び成体乳腺は、両者共に分岐形態形成を経る上皮組織であるという、共通点を有する。 いくつかの実施形態において、以下を行う。乳腺幹細胞のその他の報告されたマーカーの発現を、本明細書に記載のモデルにおいてモニタリングしてもよい。これらとしては、c−KIT、CD10、CD133及びCD90が挙げられる89。造血幹細胞にも存在するマーカー(CD38、CD34及びエンドグリン等)を試験する。SLAMマーカーも造血幹細胞で使用されるが、その発現は造血系に限定される傾向にある89。これらのマーカーのいずれかを発現する細胞集団をセルソーティングにより単離し、球状物を産生する条件に播種する。限界希釈解析により、球状物惹起細胞の頻度を明らかとし、球状物の形成が1つの細胞種に依存するか(シングルヒット動態)を決定する。コロニー惹起能に富んだ細胞集団のマーカーを組み合わせて、より大きい富化を達成する。 その他の実施形態において、以下を行う。出生後の推定上の肺幹細胞の増殖のための刊行された条件を、本明細書に記載の系においてhPSCから産生した細胞へ適用することにより、出生後肺幹細胞と一致する細胞が産生されるかの調査を行う。これは、最終的に推定上の幹細胞マーカーを発現している細胞をソーティングした後、トラキオスフェア及び肺幹細胞についての報告された条件に再播種することにより行われる51,85,86,90。 肺野系列決定に関与するメカニズム 論拠。その他の実施形態において、以下を行う。開発した高効率及び標準化された分化プロトコールを活用することで、このモデルは、ヒトの初期肺発生に関与するメカニズムを理解するのに使用することができる。このアプローチは、選択的な細胞運命を得るために条件を変更可能であり、従って、マイクロアレイ及びChIP研究における比較のための良い基準を提供するという利点、及び、特定の系譜に決定された細胞の数は理論上限定されないという利点を提供する。これは、マウスの遺伝学的アプローチ及びマウス胚の解剖とは、かなり対照的である。両種のアプローチは高度に補完的である。 NKX2.5+中胚葉の役割 AFE産生後、90%を超える細胞がFOXA2+SOX2+であったが、WFKBE+RA存在下での腹側化及び肺原基系列決定の後、変動的な割合(5から40%)の細胞がNKX2.5+EPCAM−VSMA+であった(図3)。系譜追跡調査は、腹側AFEを囲む間充織もNKX2.5+であることを示した91。従って、これらのデータは、培養物中の混入している中胚葉は、腹側AFEを囲んでいる中胚葉と同等のものであることを示す。このことは、この中胚葉がin vitroでの肺系列決定にとって有利であるかという疑問を提起する。再播種後、実質的に中胚葉の細胞は存在しないが、細胞は分化可能であるので(中胚葉の細胞の最小限の混入が、まだ役割を果たしているという可能性はあるが)、この中胚葉は更なる分化には不必要であり得る。 いくつかの実施形態において、以下を行う。中胚葉の役割を確立することが可能であり得る。AFEの誘導後、並びにAFEのEPCAM+(内胚葉)及びEPCAM−(中胚葉)集団への腹側化の後、細胞をソーティングする。次いで、これらの細胞を、その後の分化の間、別々に又は様々な比率で一緒に播種する。定量及び解析は、この実施例に先に記載したようにして進める。 もし中胚葉の存在が肺分化に影響すると認められたなら、その後、この中胚葉について遺伝子発現解析を行い、関与している可能性のある可溶性因子を検出する。これは、アフィメトリックスマイクロアレイ中に「存在する」細胞を解析すること、およびEPCAM+AFE細胞と発現を比較することで決定する。理論により縛られるものではないが、リガンドの発現(膜結合性又は可溶性)は中胚葉画分において増加し、一方、推定上のレセプターの発現は、AFE画分において高い、又は少なくとも存在する。 肺系列決定の間のゲノムワイド発現解析 これらの実験の目標は、ゲノムワイドに、ES細胞からの、遠位又は近位の肺に運命決定した細胞への分化経路をチャート化することである。現在そのようなデータは利用可能でないので、これは重要である。 いくつかの実施形態において、以下を行う。培養の以下のステージでcDNAを調製する:ES細胞、胚体内胚葉、NS又は肺野系列決定のために最適なN、S及びIの組み合わせのいずれかを使用して産生したAFE、WFKBE(咽頭)又はWFKBE+RA(肺野)存在下で腹側化後。WFKBE+RA群では、cDNAは継続したWFKBE+RA(推定上の近位)及びWFK(推定上の遠位)の存在下で培養した細胞から調製する。すべての集団において(ES細胞を除く)、内胚葉の細胞のみを比較すること、及びデータが中胚葉細胞の変動する混合により偏っていないことを確実にするために、EPCAM+細胞をセルソーティングにより単離する。更に、それぞれのステージで、培養物は広範な品質管理を経る(分化の各ステージの適切なマーカーについてのIF及びqPCRからなる)。 その他の実施形態において、以下を行う。一般的な標準化の後、データは目的変数なしのクラスタリングを受ける。理論により縛られるものではないが、分化の連続的なステージが連続的にクラスター化する。これらの調査はいくつかの結果をもたらし得る。 特定の実施形態において、以下を行う。分化の間に生じる亜集団の見込みのある単離を可能とする表面マーカーが同定される可能性がある。その明白な科学的重要性に加え、これは、定方向分化のプロトコール開発の大きな前進となるであろう。 いくつかの実施形態において、以下を行う。データは、分化の連続したステージの間に活性化又は阻害される特定のシグナリング経路を示し得る。培養に対してモルフォゲンが添加されるが、内在するシグナリング活性に関しては何も知られていない。 いくつかの実施形態において、以下を行う。データは、内胚葉及び肺発生の研究に有用な、新規のステージ特異的マーカー及び転写因子を明らかにし得る。そのようなマーカーは、発生ステージのマウス胚において、in situハイブリダイゼーションにより試験する。 特定の実施形態において、以下を行う。主要な興味は、NS、又はN、S及びIの組み合わせの使用によるAFEの誘導後に、差次的に発現する遺伝子である。これは、発生のこのステージにおいて事前系列決定が起きるか、及びどのように起きるか、を理解する最初の段階である。 事前系列決定:必須の肺誘導遺伝子で平衡を保つ?それとも保たない? 理論により縛られるものではないが、NS又はN、S及びIの組み合わせ(N/S/I)のいずれかの使用によるAFEの系列決定は、胚体内胚葉の初期発生の間の肝臓及び膵臓の前パターン形成に関する最近刊行された観察と同様に、咽頭及び肺原基の発生に重要な遺伝子における異なるヒストン修飾又はCpGメチル化を付与する92。 この研究は2つの方法でアプローチすることが可能であろう。最初のアプローチは、NSとN/S/Iとを対比して、それらにより誘導したAFEについてのChip−Seqを行うことであろう。費用が原因で、これは非常に限られた一連のヒストン修飾についてのみ行うことが可能であろう93。従って、仮説に基づくアプローチがより多くの情報を与え得る。従って、いくつかの実施形態において、以下を行う。我々は、NS又はN/S/I存在下での内胚葉誘導の後(図9のプロトコールの7日目)、2つの遺伝子(PAX9及びNKX2.1)のプロモーター領域でのヒストン修飾を通常のChIPとそれに続くPCRによって、及びCpGメチル化をバイサルファイトシークエンシングによって調べることができる。NKX2.1は肺の樹立について使用され1,2,20、一方でPAX9は(咽頭内胚葉の産生には必須でないが)、咽頭内胚葉で発現し32、NSを使用したAFEの誘導後に高発現する10。更に、PAX9はヒト14番染色体のNKX2.1のすぐ下流にあり、その間にある唯一の遺伝子は、NKX2.1ホモログのNKX2.8(肺癌において役割を果たすことが最近示された)である93。その他の実施形態において、以下を行う。いくつかの実施形態において、この狭い領域内において、高度に差次的に調節されている調節部位が見出される可能性がある。調査されるヒストン修飾は、H3K4me3、H4K4me2、及びH3K27ac(活性化プロモーター)、H3K9me3、H3K27me3及びH4K20me3(抑制化プロモーター)である95,96。NKX2.1プロモーターの詳細な解析がいくつか発表されているが97、いくつかの実施形態において、PCRプライマーは(100−200bpに及ぶ)、保存された転写結合部位を有するプロモーター領域に集中することが可能である(dcode.org)。NKX2.1については、これらは、2つの選択的な転写開始部位の間、及び(興味深いことに)サーファクタント産生に重要な5’遺伝子(SFTA3)の3’UTRにある。両部位はNKX2.1それ自体のための結合部位をいくつか含んでいる。 その他の実施形態において、以下を行う。NKX2.1はアンチセンスの方向で転写される可能性があり、保存された転写結合部位の高密度なクラスターが上記遺伝子の5’末端に存在する(それも包含される)。同様に、その他の実施形態において、PAX9における、保存された転写因子結合部位を含む領域を評価する。「ポジティブ」コントロールとして、主に咽頭内胚葉(NSを用いたAFE誘導、WFKBE存在下での腹側化)へ分化した細胞、及び肺野(N/S/Iを用いたAFE誘導及びWFKBE+RA存在下での腹側化)へ分化した細胞を使用する。 更に他の実施形態において、以下を行う。AFEがN/S/IのNSで誘導されたかどうかに依存する差次的なヒストン修飾及び/又はCpGメチル化を、PAX9及びNKX2.1の制御領域において同定する。これが当てはまらない場合には、本明細書に記載するようにして収集したマイクロアレイデータにより導かれた、別の一連の遺伝子を使用し、実験を繰り返す。例えば、咽頭の事前系列決定の間、アンチセンスNKX2.1転写物の推定上のプロモーターは、「オープン」な立体構造をとる可能性がある(大いに興味深いであろう知見)。例えば、もし広範なH3K4me3が見出された場合、SETドメインを有するタンパク質(トライソラックス群、ヒストンメチラーゼ)、及び十文字(Jumonji)ファミリータンパク質(ヒストンデメチラーゼ)が集まる96。 実施例2:hPSCからの肺気道上皮細胞分化の誘導 本実施例は、iPS細胞から、肺の内胚葉区画(即ち、気管、気管支及び肺胞の上皮細胞)、並びにこれらの構造に関連する推定上の出生後幹細胞を産生する戦略を記述する。このアプローチの再生医療への転換の可能性に加え、呼吸器系の多様な一連の細胞種を産生する能力は、発生上の肺の異常についての薬剤試験、及び肺発生についての薬剤の催奇性効果の試験を可能にする。更に、この研究は、出生後の気管気管支及び肺幹細胞の特徴的特性及び機能への有用な洞察を生み、並びにヒト発生を詳細に調査するためのin vitroモデルを提供する107。 高度に富化したAFEが産生可能であることが本発明者らにより示され、これは前側内胚葉分化の分野における主要な障害を取り除く115。更に、我々はAFEを腹側AFEの肺野に対応する細胞へと系列決定できること、および、中程度のスループットのスクリーニングを介して、肺胞マーカーを発現する細胞が得られる条件を同定できたことを示す115。 ES細胞の定方向分化の戦略 本明細書で議論したように、iPS細胞を使用した。hES細胞もコントロールとして使用した。いくつかのiPS株は、分化能に関し、ES株の正常な変動範囲内に入る120。現在使用されているiPS細胞は、切除可能なSOX2、OCT4、KLF4及びMYCを含むカセットのレンチウイルスによる形質導入によって産生されている121。最近記述されたPiggyBacシステム122はマウスで機能する。iPS細胞を産生するための新規技術の中で、繰り返しのmRNAトランスフェクション、及び非組み込み型センダイウイルスによって産生したhiPSが現在使用されている。外来の遺伝物質が組み込まれないはずなので、このアプローチは安全なiPS細胞を生む122。 106細胞をNOD/SCIDIl2rg−/−(NSG)マウスの腎臓被膜下へ移植した。未分化のHES2細胞が、三胚葉全てに由来する細胞を含むテラトーマを産生したのに対し(図1a)、NSで処理した細胞は、識別可能な外胚葉又は中胚葉の成分を欠いた成長を生じた(図1b)。偽重層上皮(上部気道上皮の典型)、又は1から3層の核を含むより組織化されていない上皮のいずれかによって裏打ちされた、多数の管腔構造を観察した(図1b)。後者は、肺のII型肺胞細胞に特異的なマーカー98,99である、Surfactant Protein−C(SP−C)で一貫して染色された(図1c)。残りの細胞は、ほぼ一様にFOXA2で染色された。しかしながら、FOXA2が核及び細胞質で発現していた管腔構造を除き、FOXA2は細胞質に限局した(図1c)。PAX9を発現する島状の細胞(咽頭嚢)31,32、及びGCMBの発現(副甲状腺)33又はAIREの分離した核内小斑点(髄質胸腺上皮細胞に特異的)34を示す領域も検出した(図1c;図2)。FOXA2と同様に、GCMB染色は主に細胞質であり、このことは、副甲状腺に非常に特異的ではあるが、前記副甲状腺組織は機能的ではないであろうことを示している。これらの知見は、NSにより誘導した胚体内胚葉の潜在能力が、AFEに派生するものへとかなり限定されていることを示す。 in vitroでのAFEの腹側化。AFEは背腹側パターン形成を経て、腹側中胚葉からのWNT、BMP、及びFGFシグナルに応答し、肺原基及び気管の腹側系列決定をもたらす1,2,35−37,98,99,143−146。このステージで、背側−腹側におけるSOX2勾配が生じ、一方、腹側特異的マーカーNKX2.1(肺及び甲状腺野1,2,38,98,99,147)、NKX2.5(腹側咽頭内胚葉で一過性に発現する39,148)、並びにPAX1(内胚葉内で咽頭嚢に特異的に発現する40,149)が誘導された。13日目まで延長したNSでの処理は、SOX2の継続的な発現をもたらし、このことは、背側運命を示唆し(図9a)、BMP4が腹側で発現するのに対し、NogginがAFEにおける背側で発現するという事実と一致する1,37,98,146。対照的に、培養7日目にNSをWNT3a、KGF、FGF10、BMP4、及びEGF(WKFBE)で置換することは、SOX2の低い発現をもたらし、13日目に腹側マーカーNKX2.1、PAX1及びNKX2.5を誘導した(HES細胞については図9a、HDF2及びHDF9 hiPS細胞については図9b)。更に、p63(気道前駆細胞マーカー98)を強く誘導した(図9a)。個々の因子の添加は、この転写誘導には十分ではなかった。初期甲状腺マーカー(PAX853)の発現は観察されず、このことは、NKX2.1誘導が、甲状腺ではなく、むしろ肺への運命決定を示すことを示唆している。免疫蛍光法により、37+6%の細胞においてNKX2.1の発現があることが明らかとなった(時折高密度に固まった細胞のコロニーにおいて起きる)(図9c)。 9日目ではなく7日目で処理した培養でのみ、NKX2.1、PAX1、及びNKX2.5を発現する能力を有したため、WFKBE腹側化刺激のタイミングは重大な意味をもつ。>90%の細胞がSOX2+FOXA2+であった。次に、NSへの曝露が、WFKBEに応答した腹側AFE運命を達成するのに有利であるかを試験した。7日目にNSで処理した培養を、培地のみ又は肝臓(後側前腸)運命を助ける条件における7日目の培養と比較した。NSへの曝露のみが、WFKBEによるその後のPAX1、NKX2.1及びNKX2.5の上方制御を可能にし(図10)、このことは、ActivinAで誘導した胚体内胚葉のNS処理が、腹側AFEへの分化に関与していることを示している。 ES/iPS由来AFEのin vitroでの肺としての潜在能力。NSで誘導したAFEのWFKBEへの曝露は、培養13日目又は19日目で、肺の終末分化マーカーの発現をもたらさなかった。レポーター遺伝子の系譜追跡調査は、咽頭嚢ではなく、肺野がレチノイン酸(RA)シグナリングを経験することを示している42−44,151,152。更に、RAは肺原基形成の間に関与する45,153。実際に、RAのWFKBEカクテルへの添加は、前側嚢マーカーPAX1の発現を減少させたが、FOXP2、NKX2.1、GATA6、及び繊毛細胞マーカーFOXJ1を増加させる(肺野運命と咽頭嚢運命の枯渇とを示唆する一連のマーカー)1,2,98,99(図11a)。SP−Cの発現は観察されなかった。しかしながら、19日目までの継続したWFKBE+RAでの処理は、低レベルのSP−Cを産生した(図11b)。 SP−C発現を最適化するために、WKFBE及びRAの存在下で腹側AFEを産生した。11日目に、48ウェルプレートで、選択された因子の400通りの二値の組み合わせ(FGF10/7、Wnt5a、Wnt3a、BMP4、Noggin、Sonic Hedgehog(SHH)、SB−431542、TGF−β1、Notch阻害剤DAPT、RA阻害剤DEAB、FGF阻害剤SU−、SHH阻害剤シクロパミン、及びRA)中に、細胞を播種した。19日目に、SPCのqPCRのために、各群4ウェルからなるようウェルをプールした。ウェルの6つの群で、SPCが誘導された。次に、陽性ウェルのプールに含まれるのと同じ条件をセットアップし、個別の条件で培養した細胞についてqPCRを行った。これらの組み合わせの中で、Wnt3a+FGF10/7のみが一貫して高レベルのSP−Cを誘導した(図11b)(Wnt154,156及びFGF10147,157,158シグナリングが、遠位の肺発生に重要であるという考えと一致する知見である)。 これらの条件において、培養物中で大規模な嚢胞性及び嚢状構造が形成された。培養13日目の染色により、これらは大部分がNKX2.1であることが明らかとなった(図11c)。しかしながら、タンパク質レベルでのSP−Cの発現は検出されず、このことは、SP−C mRNA発現細胞の成熟が、SP−Cタンパク質の発現が検出可能な程度にまではまだ十分に進行していないことを示唆している。 AFEの肺野系列決定のための条件の確立 AFEから推定肺野を誘導する因子。AFEのWFKBE及びRAによる処理は、気管及び肺原基を生じるAFEの後側面のマーカー(GATA6及びNKX2.1を含む)の、優先的な誘導をもたらした。これらの条件を、オリジナルのプロトコール(40%の細胞しかNKX2.1を発現しなかった)と比べて、80%までの肺野細胞の効率を有するより効率的な誘導を達成するために洗練した。より前側の領域を犠牲にした、AFEの肺野のより効率的な誘導は、肺及び気管支樹のより効率的なその後の誘導を可能にする。 WFKBEの組み合わせの個々の因子はNKX2.1の誘導には効果がないが、どの組み合わせが、及びどの濃度が最適であり、並びにどの因子が必須かは決定されなかった。例えば、GATA6の発現はATRAの用量に強く依存する(図12)。AFE内で、GATA6は肺原基が生じる最も後側の領域のマーカーとなる98,99,116。SHHは周囲の間充織へのシグナリングを介して、前腸発生及び分岐形態形成に使用されるが58,59,159−161、より後期の発生において、SHHシグナリングは少なくともいくつかの上皮(神経内分泌)細胞も標的とする60,162。SHHはAFEにおける前後パターンの形成においても役割を果たす61,162。マウスにおけるShhの欠失は、咽頭嚢マーカーPax1の発現を減少させた61,163。更にShh−/−マウスにおいて、副甲状腺を形成することが決定づけられている、第3咽頭嚢のより後側部分が、胸腺になることを運命づけられている前側部分を犠牲にして拡大する164。従って、シクロパミンを使用してSHHを阻害することで、AFE内で、より後側の、肺に系列決定した運命を助けることが可能である。シクロパミンのいかなる効果も、培養における、混入FOXF1間充織の役割の研究を促すであろう116。 2日間のNS使用によるAFEの誘導の後、BMP−4、Wnt3a、KGF、FGF10(FGFR2bに結合する)、EGF、及び複数濃度のATRAの、いくつかの組み合わせの効果を試験した。FGF9(FGFR2cに結合する、及び分岐形態形成にも影響する)98,99の効果、並びにいくつかの実施形態においてはシクロパミンを試験する。最初のステージにおいて、GATA6及びNKX2.1のqPCRのためにウェルをプールする。2つの時点で、以下を解析する:in vitroでは、発生の最初の時期はかなり速く進行するので、培養ステージ開始後3及び5日で解析。更に、いくつかの操作(SHHシグナリングの遮断等)は、咽頭嚢領域を犠牲として、in vitroで肺野を樹立するのに有用であり得るが、しかし、SHHは肺発生に関与するので、その後の初期発生及び肺野の拡大については有害であり得る98,99,116,158−161。 特定の実施形態において、以下を行う。GATA6及びNKX2.1の両方が最も高い条件の群をその後セットアップし、GATA6及びNKX2.1の発現について個別に解析し、ヒットを同定及び確認する。 その他の実施形態において、以下を行う。ヒットを更に解析する。可能な場合は、qPCRのデータを蛍光顕微鏡で確認する(例えば、NKX2.1の抗体を使用して)。重要なことに、「肝臓の」条件110の対応する培養を、AFE及び肺特異的マーカーの染色のコントロールの一つとして使用する。甲状腺(PAX8、TG(thyroglobulin)、TSHR(TSHレセプター))、咽頭嚢(PAX1、PAX9、TBX1、SIX、EYA及びHOXA3)、咽頭嚢誘導体(FOXN1(胸腺)、GCMB(副甲状腺)、Calcitonin(傍濾胞C細胞))、並びに、もちろん、肺及び気管(p63、NKX2.1、GATA6、FOXP2、SP−C、CCSP、FOXJ1、MUC5a)についてのマーカーを試験する。特に、神経外胚葉(TUBIII、TUJ1及びPAX6)、中胚葉(FOXF1)、並びに胃(ODD1)、肝臓(CEBPA、EVX1、FOXA3)及び膵臓(PDX1)等のより後側の内胚葉誘導体について、他の系譜の喪失及び混入も確認する。 最終的に、より成熟な細胞への分化能を評価する。 細胞の増殖 in vitroでのヒト多能性幹細胞の分化は、in vivoでのヒトの発生速度と比べ、非常に速く進行することは大いに注目すべきである。1つの考えられる理由は、in vivoでは、より多くの発生上の時間が細胞の増殖に費やされるが、in vitroでは、各発生ステージにおいて「ラテラル(水平)」な増殖よりも迅速な分化に有利に働く条件が経験的に選択されていることである。 G−CSFは心筋細胞の分化培養物の産生を増加させる74,164。いくつかの実施形態において、以下を行う。肺野の誘導条件を最適化した時点で、G−CSFの効果を調べる。発生の間の成長に対する有用なホルモン系は、インスリン様増殖因子(IGF)−成長ホルモン(GH)軸である75,164。その他の実施形態において、IGF1、GH、又は両方の添加が、細胞の産生量を増加させるかを探求することが可能である。このアプローチは、Igfシグナリング欠損の変異体において、肺が著しく低形成であるという観察により支持される75,165。 タイミングの効果 WFKBE存在下で腹側AFEマーカーを発現する可能性は、NS誘導後の狭い時間枠においてのみ存在する10。従って、WKFBE又はこのカクテルの任意の最適化派生物への曝露の長さが、その後の肺又は気管支の分化誘導の効率を決定している可能性がある。いくつかの実施形態において、FGF7/10+Wnt3a(SP−C)又はFGF7/10+Noggin(管状構造)のいずれかにおけるその後の培養の後、腹側化AFEがSP−Cを発現する可能性又は管状構造を形成する可能性を読み取る。 細胞外マトリックスの役割 その他の実施形態において、以下を行う。これらの条件を、細胞外マトリックス(ECM)存在下での培養によって、更に最適化する61。フィブロネクチン、マトリゲルに包埋された培養、及びコラーゲンI培養を調査する141,167,168。FGF7、FGF10及びWnt3a存在下で、並びにECM存在下で、SP−Cの誘導を効率的に再現可能であるかを決定することができる。コラーゲンは、乳腺上皮細胞からの分岐形態形成を可能にする72。フィブロネクチンは、in vivoでの分岐形態形成において役割を果たし、Wntシグナリングの標的である77。DCI誘導性球状物を「近位」条件から得るのに使用したように、複数のECM成分を含むマトリゲルで包埋することも一般的に使用される。もしECM包埋培養で良い結果が得られた場合、次いでいくつかの実施形態において、すべてのその後の実験はECM存在下で行うことができる。更に、三次元構造の発生(おそらく分岐形態形成を表している)を評価する。 腹側化AFEからの気管気管支及び肺胞上皮細胞の系列決定の最適化 成熟呼吸器細胞を得るための条件の更なる最適化は望ましい。これらの実験の読み取りは、発生の異なるステージでの肺マーカーの発現である(参考文献98、99、及び116に概説される)。FOXA2、NKX2.1及びGATA6は全ての肺の領域のマーカーとなり、呼吸器上皮の発生の先駆因子である。マウスにおいて、SOX2、p63及びNkx2.5(我々はAFEの腹側化後にすでに同定した)は初期の気管マーカーであり、一方、Id2、Sox9、Nmyc及びIrxは遠位の先端部マーカーである。後者は、発生が完了したときに下方制御される。従って、これらのマーカーのヒトオーソログの一過的な発現パターンは、分化のステージに関する情報を与える。分化は遠近方向に進行するので、クララ細胞マーカーCCSP、繊毛細胞マーカーFOXJ1、粘液細胞マーカーMUC5a、及び神経内分泌マーカーcalcitonin gene-related peptide product(CGRP)は柄部に現れる。ATIIマーカーであるSFTPC(SP−C)、SFTPA(SP−A)及びSFTPB(SP−B)、並びにATIマーカーであるAq5及びT1αは、終末肺胞分化を示す。ヒトにおいて、偽重層上皮ははるかにより遠位に到達するので98,99、気管に関連するマーカーを見出し得る。qPCR並びに(可能であれば)蛍光及び共焦点顕微鏡を使用する。いくつかの実施形態において、以下を行う。細胞のin vivoでの潜在能力を決定するために、腎臓被膜下に細胞を移植する。 細胞外マトリックス その他の実施形態において、以下を行う。正しい組織構造の樹立はECMの支持を使用する168。いくつかの実施形態において、SP−Cの誘導が、ECM存在下で、FGF7、FGF10及びWnt3aの存在下において、効率的に再現することが可能であるかを決定する。フィブロネクチン、コラーゲンIゲル、及びマトリゲルを使用する。コラーゲンは乳腺上皮細胞からの分岐形態形成を可能にする166。フィブロネクチンはin vivoでの分岐形態形成において役割を果たし、Wntシグナリングの標的である168。複数のECM成分を含むマトリゲルに包埋することも一般的に使用されている141。もしECM包埋培養において良い結果が得られた場合、次いでいくつかの実施形態において、全てのその後の実験はECM存在下で行う。更に、その他の実施形態において、分岐形態形成を表している、三次元構造の発生が観察されるかを決定する。 最適な因子濃度 分岐形態形成の間、多能性前駆細胞が先端部で再生する98,99,108,170。柄部に残された細胞は気管気管支上皮へと分化する。細管状/嚢状期が開始するとき、遠位細胞は肺胞細胞への分化を開始する98,99。AFEの腹側化後の、Wnt3a、FGF7及びFGF10の適用は、多量のSP−C mRNAを誘導するが、タンパク質は誘導しないことが示された。これらの条件は偏りのない選別において同定されたが、FGF10及びWntシグナリングは遠位の運命を確立するため、発生上の理にかなっている154−158。 いくつかの実施形態において、以下を行う。これらの培養において3つ全ての因子が関与しているか、及びそれらの濃度を最適化可能か(多くのモルフォゲンは濃度依存的な効果を示すため)を決定する98,171,172。 いくつかの実施形態において、以下を行う。どの程度まで、in vitroでの遠近の肺分化が影響され得るかを調査する。細胞置換治療のためにin vitroで最終的に産生され得る成熟細胞の特徴的特性を操作する方法を提供することに加え、マウスの肺発生において為された観察を我々のin vitroでのヒトの系において再現することは、この系の妥当性を立証することになるであろう。BMP−4は、発生中の肺原基において発現し、FGFシグナリングを制御し、及びより遠位の運命を促進する98,173−175。従って、Wnt3aを取り除き、Nogginを添加することにより内在性BMP−4を遮断することで、ECMの存在下及びSP−Cの欠如下での管形成及び出芽により特徴付けられる、より近位の運命に系列決定し得る。これは、近位の及び遠位の気道マーカーの発現を更に解析することにより、明らかになるはずである。更に、sFRP3又はDKKを使用して内在性Wntを阻害することにより、近位運命を更に助け得る。非標準のWnt(Wnt5a)も、おそらくSHH及びFGF10シグナリングの制御を介して、肺発生において役割を果たす176−177。発生初期のシグナリングにおいてNotchを遮断することも、より遠位の運命を促進する177。これはガンマ−セクレターゼ阻害剤DAPTを使用して達成可能である。 より近位の運命を誘導する条件は同定されているが、より遅い時点で、近位運命を誘導する条件から、よりSP−C誘導に従う条件へと培養を切り換えることの効果を調査した。pro−SPCの誘導に有利に働く条件(WFKを含む培地へのDAPTの添加)が少なくとも同定された。これは、分岐形態形成とそれに続く肺胞分化という発生上の順序を模倣しているであろう。 いくつかの実施形態において、以下を行う。SP−C誘導のための最適な条件が同定されたら、最適なタイミングを決定する。mRNA発現のみではなくSP−Cタンパク質の発現は、単純に長時間の培養を伴う可能性がある。分化した呼吸器細胞のマーカーの一連の決定は、これらの培養において成された終末分化の度合いも明らかにする。 その他の実施形態において、以下を行う。SP−C発現細胞への終末成熟が、まだ探求されたことのない、異なる条件であるかを調査する。この文脈において調査される、いくつかのシグナリング経路が存在する:グルココルチコイド、ヘッジホッグ(Hedgehog)及びRA。SHHの発現は、終末肺胞分化の間に止まる162。従って、SHHは主に周囲の肺間充織に影響を与えると信じられているが159,160、SHHの阻害は終末肺胞分化を促進するかもしれない。同様に、RAシグナリングの下方制御は、AT細胞の終末分化のために望まれる179。しかしながら、RAの役割は複雑である。RAはin vivoで、Wnt、FGF10及びBMP4の発現に影響し、従って間接的な効果を有する153。更に、RAは出生後の肺胞発生を増強するようである180。それ故、シクロパミンによるSHHシグナリングの遮断、及びBMS493によるRAシグナリングの遮断は、終末肺胞分化を達成するのに有利である可能性がある。最後に、副腎皮質ステロイドは、間充織への効果を介して肺の成熟を増進し99、それを調査する。 いくつかの実施形態において、以下を行う。もし、より近位の運命を決定する条件を定義することができた場合、次いで、更なる因子がこれらの近位領域の分化に影響するかを決定する。Notchシグナリングは、クララ細胞運命を助けることで、気管支樹の3つの成熟細胞種の中からの運命選択を決定する181。故に、DAPTによるNotchシグナリングの阻害効果が調査された。SHHは、おそらく間充織によって媒介されていないであろう、直接の効果を介して、神経内分泌細胞の分化に影響する161。従って、いくつかの実施形態において、SHHシグナリングの遮断又は増強のいずれかが、in vitroでの分化に影響し得る。 いくつかの実施形態において、以下を行う。分岐形態形成を制御する因子を調査する。iPS由来細胞の分岐形態形成をモデル化できる条件を確立することは、本分野における大きな前進となる。更に、前駆細胞は成長中の枝の先端部で再生するので、分岐形態形成の刺激と、それに続く肺胞分化のための適切な刺激の適用により、成熟細胞の産生量の増加への道を開くことができる。EGF及びHGFの両方は、コラーゲンゲル培養において、乳腺上皮前駆細胞による分岐形態形成を誘導する167,168。更に、分岐中の乳腺上皮細胞の柄部で産生されるTGF−β1は分岐を阻害し、一方、TGF−βの阻害は分岐を促進する167。EGF、HGH、SB−431542又はそれらの組み合わせの添加が、ECM包埋培養において、分岐(もしあれば)を増強するかを試験する。 in vitroで産生した気管気管支及び肺胞の細胞集団の機能解析 潜在的な出生後肺幹細胞の検出 出生後の肺は、損傷後の相当な再生能を有する。しかしながら、損傷後に主に機能すると考えられる推定上の肺幹細胞182の特徴的特性は不明瞭である100,107,183,184。気管支肺胞の接合部でのその局在により定義される一種の幹細胞(気管支肺胞幹細胞(BASC))が同定されている185。この細胞はSP−C(ATIIマーカー)及びCCSP(クララ細胞マーカー)の両方を発現する185。最近のいくつかの報告は、BASCは気管支肺胞癌の起源の細胞であり得るが、それらは肺胞幹細胞として機能しない可能性を示唆する。最初の報告では、BASCがCD45−CD31−Sca1+CD34+表現型により有望性をもって単離できると主張したが、より最近の観察は、推定上のBASCがCD34及びSca1が陽性であることに疑問を投げかけた186,187。肺幹細胞としてのSP−C+CCSP+細胞に反対する最も強い論拠は、肺胞における非常に稀な細胞(もしあれば)のみがCCSP発現前駆細胞に由来することを示している、入念な系譜追跡実験から来る。しかしながら、マウスの細気管支において、ほとんどの繊毛細胞はクララ細胞に由来する188。気管において、クララ様細胞は条件的な通過性の増幅細胞として機能するらしく、一方、ほとんどの再生能は基底細胞に由来する(それは、上皮の30%を占め、少なくともその内のいくつかはNgfr及びCD49fを発現し、in vitroでいわゆるトラキオスフェアを形成することができる)189。CD49f+Sca1+ALDH+の表現型により特定され、in vitroでいわゆる「縁付き」コロニーを形成する、別のタイプの基底細胞が同定された190。肺胞において、ATII細胞又はそのサブセットは、ATI細胞へ分化することが可能である100,107,183。ヒトにおいて、偽重層上皮は細気管支レベルにまで到達する98。故に、ヒトにおいては、気管気管支性と肺胞性というわずか2種類の幹細胞及びそれに対応する出生後幹細胞ニッチが存在し得る。 出芽中の枝の先端部の細胞は、呼吸器系の全ての上皮細胞を生じることが示されているので、この二分法は発生中には存在しないと考えられる。発生後期においてのみ、これらの細胞は肺胞に運命決定されている170。しかしながら、ほとんどの利用可能なデータは、発生が進行するにつれ、異なる前駆細胞が定められることを示唆する100,107,183−187。それにも関わらず、in vitroで気道及び肺胞細胞を生じることができる、CD49f+CD104+EpcamhiCD24lo表現型を有する肺幹細胞についての証拠が発表されている191。これらの推定上の出生後肺幹細胞(その局在は不明)は、それ故、少なくともCD49fの発現を基底細胞と共通して有する189,190。それらはin vitroにおいて、嚢状及び嚢胞状コロニーを形成することができる。興味深いことに、これらはFGF10を伴い、しかしBMP−4により阻害された。これらのコロニーの産生はHGF(上記モデルにおいて試験することを提案した因子)も伴う191。 本明細書に記載のモデルにおいて、推定上の肺幹細胞を検出するために、2つのアプローチを使用する。第一のアプローチにおいて、NKX2.1+嚢状コロニー(図11c)の形成後、培養物を再播種した。NKX2.1+又はSP−C+コロニーの再生(図11c参照)が観察される(25日目以降にNKX2.1、及び45日目以降にpro−SPCをそれぞれ観察)。再播種能が観察されたので、いくつかの実施形態において、以下を行う。限界希釈法を行い、これらの構造を惹起する細胞の頻度を決定する。そして、一連の再播種は、これらの細胞の再生能の指標を与える。次の工程では、これらの推定上の幹細胞を、肺の幹細胞に関連する表面マーカー(Ngfr、CD49f、Epcam、CD24、ALDH(比色染色ALDEFLUORを使用して検出される))について、細胞集団を解析することにより、見込みをもって単離する189−191。興味深いことに、いくつかの推定上の肺幹細胞マーカーは、ヒト乳腺幹細胞を単離することにも使用される。これらとして、Epcam(ヒト乳腺幹細胞はEpcam−であるが)、CD49f、CD24及びALDH1が挙げられる192。発生中の肺及び成体乳腺は、両方とも分岐形態形成を経る上皮組織であるという共通点を有する。 従って、いくつかの実施形態において、以下を行う。乳腺幹細胞について報告された他のマーカーの発現をモニタリングする。これらとして、c−KIT、CD10、CD133及びCD90が挙げられる192。CD38、CD34及びエンドグリン等の、造血幹細胞に存在するマーカーを試験する。SLAMマーカーも造血幹細胞で使用されるが、しかし、それらの発現は造血系に限定される傾向にある193。これらのマーカーのいずれかを発現する細胞集団をセルソーティングにより単離し、NKX2.1及びSP−C発現コロニーの産生に最適な条件に播種する。コロニー惹起能に富んだ細胞集団のマーカーを組み合わせて、より高い富化を達成する。精製した推定上の幹細胞を、p63、SOX2、GATA6、FOXA2及びNKX2.1、FOXJ1、SFTPC(SP−C)、MUC5A、CGRP、CCSP等の、肺/気管マーカーの発現について解析する。 いくつかの実施形態において、以下を行う。出生後の推定上肺幹細胞の増殖についての既知の条件を、本明細書に記載の系において多能性細胞から産生した細胞へ適用することにより、出生後の肺幹細胞と一致する細胞が産生されるかを調査する。この再播種は、推定上の幹細胞マーカーを発現する細胞をソーティングした後、トラキオスフェア及び肺幹細胞について報告された条件において最終的に行う189−191,194。そのようなアプローチの実現可能性を実証する予備実験として、Rockらのプロトコールを使用して、成体マウスの気管からのトラキオスフェアの産生に成功した(図13)189。 腎臓被膜下への異種移植 NSで誘導したAFEを免疫不全マウスの腎臓被膜下へ移植した後、複数のSP−C+管状構造、及び偽重層上皮を有する構造を観察した(図1c)。これらのデータは、in vitroで産生したAFEは、in vivoで有意な肺としての潜在能力を有し、逆に、このアッセイは移植した細胞の肺の潜在能力を比較的効率的に明らかにすることを示す。この知見はまた、腎臓被膜下へのE11.5マウスの胎生期肺の移植が、肺胞発生の偽腺様及び細管状期を介しての分化を可能にしたという観察と一致する195。この過程の間、移植された血管は内に伸びるホストの血管と結合した195。 いくつかの実施形態において、以下を行う。本明細書に記載の方法に従い産生した細胞のin vivoでの潜在能力はより狭いのか、肺の産生により限定されているかを決定する。試験する時点は、WKFBE+RAを使用、又は同定された任意の改良プロトコールを使用して腹側化した後のAFE、及び分化の連続的なステージである。106細胞を4℃のマトリゲル(4μl)中に溶かし、37℃で凝固させ、免疫不全NSGマウスの腎臓被膜下へ移植した。3−5匹のマウスの群を、各条件及び分化ステージについて、移植後4及び8週でそれぞれ解析する。解析は、気道上皮細胞(FOXJ1、CCSP、CGRP、MUC5a、p63)、肺胞細胞(SP−C、T1a、AQ5)の染色からなる。更に、GCMB(副甲状腺)PAX9及びTBX1(咽頭嚢)、Calcitonin(C細胞)、AIRE(胸腺)に対する染色により、その他の運命を調査する。 in vitroでの前駆細胞/幹細胞活性に富んだ細胞集団が同定された。いくつかの実施形態において、以下を行う。コラーゲンゲル又はマトリゲルのいずれかに懸濁した後のものも移植する。ヒト乳腺幹細胞がこのアプローチを使用することで定量化可能であるという事実により、このアプローチは正当化される196,197。更に、もしin vivoでの幹細胞活性が観察された場合、増殖物を回収し、二次的レシピエントに移植することにより、自己複製能を評価することが可能である。 肺損傷モデル 肺損傷モデル197は通常、内在性の前駆細胞からの再生を評価するために使用される188−190,199。肺細胞を用いた肺損傷の治療例は数少ない。精製したATII細胞の気管内投与は、ブレオマイシン誘導性の炎症及びその後の線維症を防止できた200。これらの知見と一致して、hES由来のATII細胞(選択を使用して得られた)は、ブレオマイシン毒性からの生存を改善した201。しかしながら、両方のケースにおいて、肺胞における移植細胞の確かな生着の証拠を欠いており、このことは、間接的な効果を示唆している。肺損傷モデルにおいて、最適化されたプロトコールで得られた、任意の成熟細胞集団の潜在能力を試験する試みは有用である。もし十分に高い純度で得られるなら、興味の対象となる細胞は、ATII細胞、クララ細胞、及び肺幹細胞活性を有するあらゆる細胞種である。 いくつかの実施形態において、以下を行う。原則として、ブレオマイシンの吸入(肺胞の損傷)又はナフタレンのip投与(気管気管支のクララ細胞の傷害)によりNSGマウスの肺に傷害を与え、細胞を経口気管内の挿管により202,203、3、7又は14日目に注入する。マウスの生存、体重の減少及びその後の増加、肺の質量、及び一連の組織学的解析を行う。 理論により縛られるものではないが、最良の機能アッセイ法は、脱細胞化した肺マトリックスの再細胞化であろう204−206。このアプローチは、全ての成熟細胞及び幹細胞の区画を含む呼吸器上皮ばかりでなく、おそらく間充織細胞、加えて血管も伴う。 実施例3:NKX2.1+FOXA2+細胞の富化の最適化 上記の培養プロトコール(図2及び図3)において、肺野細胞(NKX2.1+FOXA2+Pax8−Pax6−)の富化は40%を超えることはなかった。故に、NKX2.1+FOXA2+細胞のより良い富化を達成するための戦略を開発した。マウスの胚発生の間、初めにnodal/activinシグナリングから離れるように移動する内胚葉の細胞がAFEとなる。故に、中腸や後腸の内胚葉細胞と比べ、AFEはActivinAシグナリングに最も短い時間曝露された。初期及び後期内胚葉(4、4.5及び5日目)を、肺野細胞系列決定の能力について試験した。4、4.5及び5日目の内胚葉の産生量は全て>90%であったが(図14、左パネル)、これらの内胚葉細胞からの肺野細胞の富化は、互いに大きく異なった。 初期内胚葉は、後期内胚葉と比べ、NKX2.1+細胞を40−60%高い効率で産生した(図14(A)と図14(B)及び(C)との対比)。5日目の内胚葉は、〜10%のNKX2.1+細胞しか産生しなかった(図14(C))。これらの結果は、ActivinAに曝露した胚様体の、分離のタイミングが重大な意味をもつことを示した。DEを5日より長く誘導したとき、NKX2.1+FOXA2+細胞を産生する潜在能力は完全に失われた。第二に、マウスのAFE形成の間、AFEになることを運命付けられた細胞は、nodal/activin阻害剤Lefty、及びBMP4阻害剤Nogginが発現する区域を通過し、このことはおそらく、なぜActivinAへの曝露期間の後に、TGF−β及びBMPシグナリングを遮断することが、この部分の内胚葉を決定するのに使用されるかを説明している。その後に、最も前側に運命付けられた細胞は、Wnt阻害剤Dkk1に曝される。 特定時期のWntシグナリングの阻害が、肺野のより詳細な系列決定をもたらし得るという仮説を試験した。ActivinAで誘導したDEを、4日目から5日目までNSへ、次いで、5日目から6日目までSB及びWnt阻害剤IWP−2(SI)へと曝露した。その後、先に記述したように、細胞を15日目まで、腹側化カクテル、Wnt3a、BMP−4、FGF10、FGF7及びEGF、並びにRAの存在下(WKFBE+RA)で培養した。NSのみへの曝露と比べ、NSとそれに続くSIでは、15日目のNKX2.1+FOXA2+細胞及びNKX2.1 mRNAの画分が増加した(図8)。NS/SIの順序を逆にすること、又はSIのみを使用することは、NKX2.1の発現にとっては有害であった。更に、腹側化の間のRAの用量が重大な意味をもつことを決定し、50μMが最適であることを決定した(図19)。 更に、肺野細胞系列決定に対するFGF7及びEGFの重要性及び寄与を調査した。培養培地からそれぞれの因子、又は両因子を抜くことで、NKX2.1+FOXA2+細胞の産生量が減少しないという結果を示した(データは示さず)。これらの操作(RAの最適用量と共に)は、大部分(80%)の細胞がNKX2.1+FOXA2+である培養物をもたらした。重要なことに、DEの分離の最適なタイミング及び最適なRAの用量は、hPSCの具体的な株に依存して変化する可能性があり、それ故、異なるhPSCに対して試験することが有利である。これらの培養において、神経又は甲状腺分化についての、pPCR又はIFでの証拠は観察されなかった。NKX2.1は甲状腺及び前脳においても発現するので、このことは重要である。培養15日目のIFによって、成熟肺上皮細胞のマーカーは検出されなかった。しかしながら、FOXA2、SOX2及びNKX2.1のいずれも陰性であるがp63を発現する、島状の細胞を観察した(図15)。培養がより低密度である場合、それらはNKX2.1+細胞を取り囲む、紡錘状の核を有する線状に並んだ細胞として存在する(図15)。これらの細胞の特徴的特性は今のところ不明である。 より成熟な肺マーカーをタンパク質レベルでは発現しない、肺野を誘導する最適な条件を確立し、15日目に培養物をWFKB+RA又はWFKの条件に再播種し、35日目まで培養を観察した。23日目以降に、培養物全体はコロニーからなり、そのコロニーは、>90%がFOXA2+SOX2+であり、その大部分がNKX2.1を発現した(NKX2.1はより斑状であったが)(左下パネル、図5 NKX2.1)。コロニーはFOXA2+p63+細胞の縁により囲まれ、このことは、気道の幹細胞である、基底細胞を示唆している(図5、左及び中央のパネル)。これらはFOXA2を発現したが、ごく外縁部においてNKX2.1は薄かった。構造のより中心部に向かって、p63及びNKX2.1は共発現した(右上、図5)。コロニー内で、ムチン(MUC2(示されていない)及びMUC5a(右下、図5))を発現する管状構造が存在した。遠位マーカー(SP−A、SP−B、SP−C及びSP−D)、並びにクララ細胞マーカー(CC−10)及び繊毛細胞マーカー(アセチル化チューブリン)は、IF(散在的なCC−10又はSP−B陽性細胞は見出し得る)又はqPCRによって検出されなかった。マウス胚において分岐形態形成が開始すると、RAシグナリングは発生中の肺の最も遠位の区画において減少する。 更に、構成的に活動性のRAシグナリングは遠位の肺の発生を妨げ、近位の気道の発生を助ける。我々は、遠位マーカーSP−CのmRNA発現を達成するには、BMP4は成長因子カクテルから取り除かれるべきであることも示した(SP−Cタンパク質は検出されなかったが)。しかし、これらの培養においては、35日目に、遠位マーカーを発現する細胞への分化の証拠は観察されなかった。それ故、我々は、デキサメタゾン、ブチリルcAMP及びイソブチルメチルキサンチン(DCI)(胎生期のマウス肺外植片において肺胞の成熟を誘導する)を添加し、又は添加せずに更に培養した。試験した全ての上皮性肺及び気道マーカーのmRNAの発現(CC−10(クララ細胞)、FoxJ1(繊毛細胞)、MUC2、MUC5C及びMUC5AC(杯状細胞)、SP−A、SP−B、SP−D(ATII)細胞、Acq5及びポドプラニン(ATI細胞))が55日目までに急激に増加し(データは示していない)、この増加はBMP4及びRAを欠くときにより顕著であった。IFによって、多量のSP−B+細胞、及びCC−10+若しくはMuc2+の集団、リゾチーム+、又はレクチン DBA+細胞を観察し(図16(A)−(C)及び図17(B)−D)、これらは全体で培養における大部分の細胞を占めた。これらにはムチン5AC+(示されていない)、又はMuc1+細胞(図18(A))の集団が散在していた。 qPCRのデータと一致して、SP−C+細胞は稀であった。アセチル化チューブリンは、コロニーの縁で及びコロニー内の管状構造において、主に検出された(図16(D))。全てのこれらのマーカーは、DCIを用いる及び用いない条件の両方において検出された。DCIの添加は、SPB及びNkx2.1共発現細胞の集団の系列決定を強化した(図16(C))。一貫して、DCIを加えた条件において、SPB mRNAの発現はより高くなった。BMP4及びRAの存在下で、一貫してより高く発現した唯一のマーカーは、基底細胞マーカーp63であった。実際に、BMP4及びRA非存在下で、NKX2.1+p63+細胞は、23日目では稀にしか観察されなかったが、25日目以降では、いくらかのNKX2.1+p63+細胞が観察された。 これらのデータは、BMP4若しくはRAのいずれか、又は両方が、in vitroでの肺前駆細胞の成熟に対して有害であるが、しかし、別の系譜として定められるであろう推定上の基底細胞の発生を助けることを示唆した。BMP4及びRAの役割を、それぞれ別々に、分化培養において更に試験した。その結果は、使用した用量(50nM)でのRAは系譜決定に対し有害ではなく、しかし、BMP4はin vitroでの肺前駆細胞の成熟に対し有害であることを示す。 最後に、Notchシグナリングの阻害、及びそれが特定の系譜の成熟を助けるかを試験した。Notch阻害剤DAPTを、WFKB+RA又はWFKを含む条件において、培養25日目に添加した。20から25日の更なる培養の後、CC10+pro−SP−C+SP−B+細胞群の富化を観察し、>40%の細胞が、DAPT+WFKを含む条件において、トリプルポジティブであった(図18)。この条件下で、ムチン2+細胞及びレクチン DBA+細胞の富化も観察した。 hPSC由来の肺前駆細胞の分化は、非常に低い効率で成されてきて、いくつかの近位マーカーを発現する、ほんの数パーセントの細胞しか得られなかった。マウスでは、肺及び甲状腺に運命決定された細胞を単離するために、NKX2.1:GFPレポーターを使用しなければならなかった。本報告は、hPSCの多様な肺及び気道細胞への、完全な分化を初めて示すものである。しかしながら、肺胞細胞の終末成熟は、いまだ達成されなかったことは明らかである。それでもなお、上記プロトコールは、系譜決定を更に研究するためのモデルを提供する。 参考文献1. Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8-23.2. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol. 2010; 90:73-158.3. Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature. 2008;453:745-750.4. Lai L, Jin J. Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells. 2009;27;3012-3020 (2009).5. Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:4449-4454.6. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453:524-528.7. D'Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392-1401.8. Gouon-Evans, V. et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:1402-1411.9. Cai, J. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229-1239.10. Green M, Chen, A, Nostro MC, d’Souza S, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol., 2011;29:267-272.11. Wetsel RA, Wang D, Calame DG. Therapeutic potential of lung epithelial progenitor cells derived from embryonic and induced pluripotent stem cells. Annu Rev Med. 2011;62:95-105.12. Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res. 2010;156:188-205.13. Bertoncello I, McQualter JL. Endogenous lung stem cells: what is their potential for use in regenerative medicine? Expert Rev Respir Med. 2010;4:349-362.14. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008;132:661-680.15. Yamanaka S. A fresh look at iPS cells. Cell. 2009;137:13-17.16. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread Tissue Contribution. Cell Stem Cell. 2007;1:55-70.17. Okita, K Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317.18. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2:3081-3089.19. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25:1177-1181 (2007).20. Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87:219-244. 21. Winkler ME, Mauritz C, Groos S, Kispert A, Menke S, Hoffmann A, Gruh I, Schwanke K, Haverich A, Martin U. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells. Cloning Stem Cells. 2008;10:49-64.22. Van Haute L, De Block G, Liebaers I, Sermon K, De Rycke M Generation of lung epithelial-like tissue from human embryonic stem cells. Respir Res. 2009;10:105.23. Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:4449-4454.24. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453:524-528.25. D'Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392-1401.26. Gouon-Evans, V. et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:1402-1411.27. Cai, J. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229-1239.28. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275-280.29. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2010 Dec 1230. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141:704-716.31. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 2009;25:221-251.32. Sherwood RI, Chen TY. Melton DA. Transcriptional dynamics of endodermal organ formation. Dev Dyn 2009;238:29-42.33. Gordon J, Bennett AR, BlackburnCC, Manley NR. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev. 2001;103:141-143.34. Ladi E, Yin X, Chtanova T, Robey EA. Thymic microenvironment for T cell differentiation and selection. Nat Immunol. 2006;7:337-343.35. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138-141.36. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009;17:290-298.37. Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development. 1996;122:1693-1702.38. Lazzaro D, Price M, de Felice M, Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991;113:1093-1104.39. Tanaka M, Schinke M, Liao HS, Yamasaki N, Izumo S. Nkx2.5 and Nkx2.6, homologs of Drosophila tinman, are required for development of the pharynx. Mol Cell Biol. 2001;21:4391-4398.40. Wallin J, Eibel H, Neubuser A, Wilting J, Koseki H, Balling R. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 1996;122:23-30.41. Fagman H, Nilsson M. Morphogenesis of the thyroid gland. Mol Cell Endocrinol. 2010;323:35-54.42. Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development. 2000;127:3057-3067.43. Rossant J, Zirngibl R, Cado D, Shago M, Giguere V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis.Genes Dev. 1991;5:1333-1344.44. Chen F. et al. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 2010;120:2040-2048.45. Shu W, Guttentag S, Wang Z, Andl T, Ballard P, Lu MM, Piccolo S, Birchmeier W, Whitsett JA, Millar SE, Morrisey EE. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol. 2005;283:226-239.46. Love D, Li FQ, Burke MC, Cyge B, Ohmitsu M, Cabello J, Larson JE, Brody SL, Cohen JC, Takemaru K. Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby. PLoS One. 2010;5:e13600.47. Mucenski ML, Wert SE, Nation JM, Loudy DE, Huelsken J, Birchmeier W, Morrisey EE, Whitsett JA beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem. 2003;278:40231-40238. 48. Hyatt BA, Shangguan X, Shannon JM. FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1116-26.49. Park WY, Miranda B, Lebeche D, Hashimoto G, Cardoso WV. FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol. 1998;201:125-134.50. Gonzales, L.W., Guttentag, S.H., Wade, K.C., Postle, A.D., and Ballard, P.L. 2002. Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol 283:L940-95151. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106:12771-12775. 52. XuP, HashimotoS, MiyazakiH, Asabe K, Shiraishi S, Sueishi K. Morphometric analysis of the immunohistochemical expression of Clara cell 10-kDa protein and surfactant apoproteins A and B in the developing bronchi and bronchioles of human fetuses and neonates. Virchows Arch. 1998;432:17-25.53. Zhou L, Lim L, Costa RH, Whitsett JA.Thyroid transcription factor-1, hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung. J Histochem Cytochem. 1996 Oct;44(10):1183-93.54. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 2009;25:221-251.55. del Barco Barrantes I, Davidson G, Grone HJ, Westphal H, Niehrs C. Dkk1 and noggin cooperate in mammalian head induction. Genes Dev. 2003;17:2239-2244.56. Vu TH, Alemayehu Y, Werb Z. New insights into saccular development and vascular formation in lung allografts under the renal capsule.Mech Dev. 2003;120:305-313.57. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121:2855-2862. 58. Litingtung Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. Nat Genet. 1998;20:58-61.59. Pepicelli CV, Lewis PM, McMahon AP Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 1998;8:1083-1086.60. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313-317.61. Moore-Scott BA, Manley N. Differential expression of sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol 2005;27:323-335.62. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 2011 Nov 6. 63. Rawlins EL, Clark CP, Xue Y, Hogan BL. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development. 2009;136:3741-3745.64. Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, Del Moral PM, De Langhe S, Parsa S, Kelly LK, Kelly R, Shia W, Keshet E, Minoo P, Warburton D, Bellusci S. Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol. 2007;307:237-247.65. Loscertales M, Mikels AJ, Hu JK, Donahoe PK, Roberts DJ. Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development. 2008;135:1365-13676. 66. Li C, Hu L, Xiao J, Chen H, Li JT, Bellusci S, Delanghe S, Minoo P. Wnt5a regulates Shh and Fgf10 signaling during lung development.Dev Biol. 2005;287:86-97. 67. Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, Cardoso WV. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem. 2008;283:29532-29544. 68. Hind M, Gilthorpe A, Stinchcombe S, Maden M. Retinoid induction of alveolar regeneration: from mice to man? Thorax. 2009;64:451-457.69. Gonzales LW, Angampalli S, Guttentag SH, Beers MF, Feinstein SI, Matlapudi A, Ballard PL. Maintenance of differentiated function of the surfactant system in human fetal lung type II epithelial cells cultured on plastic. Pediatr Pathol Mol Med. 2001;20:387-412.70. Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009;136:2297-2307.71. Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BL. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell. 2011;8:639-648.72. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 2006;314:298-300. 73. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287-309. 74. Shimoji K, Yuasa S, Onizuka T, Hattori F, Tanaka T, Hara M, Ohno Y, Chen H, Egasgira T, Seki T, Yae K, Koshimizu U, Ogawa S, Fukuda K. G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell. 2010;6:227-237.75. Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol. 2010;28:4985-4995. 76. Silva D, Venihaki M, Guo WH, Lopez MF. Igf2 deficiency results in delayed lung development at the end of gestation. Endocrinology. 2006;147:5584-5591.77. De Langhe SP, Sala FG, Del Moral PM, Fairbanks TJ, Yamada KM, Warburton D, Burns RC, Bellusci S.Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol. 2005 15;277:316-331.78. Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR. Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci U S A. 2009;106:9286-9291.79. Rawlins EL, Okubo T, Que J, Xue Y, Clark C, Luo X, Hogan BL. Epithelial stem/progenitor cells in lung postnatal growth, maintenance, and repair. Cold Spring Harb Symp Quant Biol. 2008;73:291-295.80. Raiser DM, Kim CF. Commentary: Sca-1 and Cells of the Lung: A matter of Different Sorts. Stem Cells. 2009;27:606-611.81. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823-835.82. McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I. Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells. 2009;27:623-633.83. Teisanu RM, Lagasse E, Whitesides JF, Stripp BR.Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics.Stem Cells. 2009;27:612-622.84. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BL. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009;4:525-534.85. Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, Reynolds SD. A Single Cell Functions as a Tissue-Specific Stem Cell and the In Vitro Niche-Forming Cell. Am J Respir Cell Mol Biol. 2010 Dec 3.86. McQualter JL, Yuen K, Williams B, Bertoncello I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A. 2010;107:1414-1419.87. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, Sun Y, Joo LS, Dagher R, Zielonka EM, Wang de Y, Lim B, Chow VT, Crum CP, Xian W, McKeon F. Distal Airway Stem Cells Yield Alveoli In Vitro and during Lung Regeneration following H1N1 Influenza Infection. Cell. 2011;147:525-538.88. Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23:2563-2577.89. Avagyan S, Amrani Y, Snoeck HW. Isolation and analysis of mouse hematopoietic stem cells. Methods Enzymol., 2010;476:429-447.90. Bertoncello I, McQualter J. Isolation and clonal assay of adult lung epithelial stem/progenitor cells. Curr Protoc Stem Cell Biol. 2011;Chapter 2:Unit2G.1.91. Que J, Luo X, Schwartz RJ, HoganBL. Multiple roles for SOX2 in the developing and adult mouse trachea. Development. 2009;136:1899-1907. 92. Xu CR, Cole PA, Meyers DJ, Kormish J, Dent S, Zaret KS. Chromatin "prepattern" and histone modifiers in a fate choice for liver and pancreas. Science. 2011;332:963-966.93. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669-680.94. Hsu DS, Acharya CR, Balakumaran BS, Riedel RF, Kim MK, Stevenson M, Tuchman S, Mukherjee S, Barry W, Dressman HK, Nevins JR, Powers S, Mu D, Potti A. Characterizing the developmental pathways TTF-1, NKX2-8, and PAX9 in lung cancer. Proc Natl Acad Sci U S A. 2009;106:5312-5317.95. Cedar H, Bergman Y. Linknig DNA methylation and histone modification: patterns and paradigms. Nat Rev Genetics 2009;10:295-304.96. Lessard JA, Crabtree G. Chromatin regulatory mechanism in pluripotency. Annu Rev Cell Dev Biol 2010;26:503-532.97. Das A, Acharya S, Gottipati KR, McKnight JB, Chandru H, Alcorn JL, Boggaram V. Thyroid transcription factor-1 (TTF-1) gene: identification of ZBP-89, Sp1, and TTF-1 sites in the promoter and regulation by TNF-α in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2011;301:L427-440.98. Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8-23.99. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol. 2010;90:73-15.100. Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res. 2010;156:188-205.101. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008;132:661-680.102. Yamanaka S. A fresh look at iPS cells. Cell. 2009;137:13-17.103. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread Tissue Contribution. Cell Stem Cell. 2007;1:55-70.104. Okita, K Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448:313-317.105. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007; 2:3081-3089.106. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25:1177- 1181 (2007).107. Bertoncello I, McQualter JL. Endogenous lung stem cells: what is their potential for use in regenerative medicine? Expert Rev Respir Med. 2010;4:349-362.108. Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature. 2008;453:745-750109. D'Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392-1401.110. Gouon-Evans, V. et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:1402-1411.111. Cai, J. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229-1239.112. Gadue, P., Huber, T.L., Paddison, P.J. & Keller, G.M. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103,16806-16811 (2006).113. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, HoskinsEE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2010 Dec 12.114. Wetsel RA, Wang D, Calame DG. Therapeutic potential of lung epithelial progenitor cells derived from embryonic and induced pluripotent stem cells. Annu Rev Med. 2011;62:95-105.115. Green M, Nostro MC, d’Souza S, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck, HW. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol., 2011, in press.116. Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87:219-244.117. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107:4335-4340.118. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285-290.119. Lister et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; doi:10.1038.120. Christoph Bock, Evangelos Kiskinis, Griet Verstappen, Hongcang Gu, Gabriella Boulting, Zachary D. Smith, Michael Ziller, Gist F. Croft, Mackenzie W. Amoroso, Derek H. Oakley, Andreas Gnirke, Kevin Eggan, Alexander Meissner Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell 2011;144:439-452.121. Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells. 2010;28:1728-1740.122. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. piggyback transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766-770.123. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM,Rossi DJ. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618-30.124. Winkler ME, Mauritz C, Groos S, Kispert A, Menke S, Hoffmann A, Gruh I, Schwanke K, Haverich A, Martin U. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells. Cloning Stem Cells. 2008;10:49-64.125. Van Haute L, De Block G, Liebaers I, Sermon K, De Rycke M Generation of lung epithelial-like tissue from human embryonic stem cells. Respir Res. 2009;10:105.126. Lai L, Jin J. Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells. 2009;27;3012-3020 (2009).127. Lin, R.Y., Kubo, A., Keller, G.M. & Davies, T.F. Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology. 2003;144;2644-2649.128. Bingham EL, Cheng SP, Woods Ignatoski KM, Doherty GM. Differentiation of human embryonic stem cells to a parathyroid-like phenotype. Stem Cells Dev. 2009;18:1071-1080.129. Hidaka, K. et al. Differentiation of Pharyngeal Endoderm and Derivatives from Mouse Embryonic Stem Cells. Stem Cells Dev. Sept. 13.130. Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:4449-4454.131. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Humancardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell derived population. Nature. 2008;453:524-528.132. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275-280.133. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141:704-716.134. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 2009;25:221-251.135. Sherwood RI, Chen TY. Melton DA. Transcriptional dynamics of endodermal organ formation. Dev Dyn 2009;238:29-42.136. Yasunaga M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 2005;23:1542-1550.137. Graham A. Deconstructing the pharyngeal metamere. J Exp Zool B Mol Dev Evol. 2008;310:336-344.138. Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998;12:2735-2747.139. Li Y. et al. Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. Genes Dev. 2008;22:3050-3063.140. Wood HB, Episkopou V. Comparative expression of the mouse Sox1, SOX2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 1999;86:197-201.141. Weinstein DC. et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 1994;78:575-588.142. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007;4:359-365.143. Bachiller, D. et al. The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130, 3567-3578 (2003).144. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138-141.145. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009;17:290-298.146. Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development. 1996;122:1693-1702.147. Lazzaro D, Price M, de Felice M, Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991;113:1093-1104.148. Tanaka M, Schinke M, Liao HS, Yamasaki N, Izumo S. Nkx2.5 and Nkx2.6, homologs of Drosophila tinman, are required for development of the pharynx. Mol Cell Biol. 2001;21:4391-4398.149. Wallin J, Eibel H, Neubuser A, Wilting J, Koseki H, Balling R. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 1996;122:23-30.150. Fagman H, Nilsson M. Morphogenesis of the thyroid gland. Mol Cell Endocrinol. 2010;323:35-54.151. Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development. 2000;127:3057-3067.152. Rossant J, Zirngibl R, Cado D, Shago M, Giguere V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 1991;5:1333-1344.153. Chen F. et al. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 2010;120:2040-2048.154. Shu W, Guttentag S, Wang Z, Andl T, Ballard P, Lu MM, Piccolo S, Birchmeier W, Whitsett JA, Millar SE, Morrisey EE. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol. 2005;283:226-239.155. Love D, Li FQ, Burke MC, Cyge B, Ohmitsu M, Cabello J, Larson JE, Brody SL, Cohen JC, Takemaru K. Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby. PLoS One. 2010;5:e13600.156. Mucenski ML, Wert SE, Nation JM, Loudy DE, Huelsken J, Birchmeier W, Morrisey EE, Whitsett JA beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem. 2003;278:40231-40238.157. Hyatt BA, Shangguan X, Shannon JM. FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1116-26.158. Park WY, Miranda B, Lebeche D, Hashimoto G, Cardoso WV. FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol. 1998;201:125-134.159. Litingtung Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. Nat Genet. 1998;20:58-61.160. Pepicelli CV, Lewis PM, McMahon AP Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 1998;8:1083-1086. 161. White AC, Xu J, Yin Y, Smith C, Schmid G, Ornitz DM. FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development. 2006;133:1507-1517.162. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313-317.163. Moore-Scott BA, Manley N. Differential expression of sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol 2005; 27:323-335. 164. Shimoji K, Yuasa S, Onizuka T, Hattori F, Tanaka T, Hara M, Ohno Y, Chen H, Egasgira T, Seki T, Yae K, Koshimizu U, Ogawa S, Fukuda K. G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell. 2010;6:227-237.165. Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol. 2010;28:4985-4995.166. Silva D, Venihaki M, Guo WH, Lopez MF. Igf2 deficiency results in delayed lung development at the end of gestation. Endocrinology. 2006;147:5584-5591.167. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 2006;314:298-300.168. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissuearchitecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287-309.169. De Langhe SP, Sala FG, Del Moral PM, Fairbanks TJ, Yamada KM, Warburton D, Burns RC, Bellusci S.Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol. 2005 15;277:316-331.170. Rawlins EL, Clark CP, Xue Y, Hogan BL. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development. 2009;136:3741-3745.171. Alejandre-Alcazar MA, Shalamanov PD, Amarie OV, Sevilla-Perez J, Seeger W, Eickelberg O, Morty RE. Temporal and spatial regulation of bone morphogenetic protein signaling in late lung development. Dev Dyn. 2007;236:2825-2835.172. Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, Del Moral PM, De Langhe S, Parsa S, Kelly LK, Kelly R, Shia W, Keshet E, Minoo P, Warburton D, Bellusci S. Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol. 2007; 307:237-247.173. Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BL. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol. 2006; 291:67-82.174. Lu MM, Yang H, Zhang L, Shu W, Blair DG, Morrisey EE The bone morphogenic protein antagonist gremlin regulates proximal-distal patterning of the lung. Dev Dyn. 2001; 222: 667-680.175. Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development. 1999; 126:4005-4015.176. Loscertales M, Mikels AJ, Hu JK, Donahoe PK, Roberts DJ. Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development. 2008;135:1365-13676.177. Li C, Hu L, Xiao J, Chen H, Li JT, Bellusci S, Delanghe S, Minoo P. Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol. 2005;287:86-97.178. Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, Cardoso WV. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem. 2008;283:29532-29544.179. Wongtrakool C, Malpel S, Gorenstein J, Sedita J, Ramirez MI, Underhill TM, Cardoso WV. Down-regulation of retinoic acid receptor alpha signaling is required for sacculation and type I cell formation in the developing lung. J Biol Chem. 2003;278:46911-46918.180. Hind M, Gilthorpe A, Stinchcombe S, Maden M. Retinoid induction of alveolar regeneration: from mice to man? Thorax. 2009;64:451-457.181. Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009;136:2297-2307.182. Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR. Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci U S A. 2009;106:9286-9291.183. Rawlins EL, Okubo T, Que J, Xue Y, Clark C, Luo X, Hogan BL. Epithelial stem/progenitor cells in lung postnatal growth, maintenance, and repair. Cold Spring Harb Symp Quant Biol. 2008;73:291-295.184. Raiser DM, Kim CF. Commentary: Sca-1 and Cells of the Lung: A matter of Different Sorts. Stem Cells. 2009;27:606-611. 185. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823-835.186. McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I. Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells. 2009;27:623-633.187. Teisanu RM, Lagasse E, Whitesides JF, Stripp BR.Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells. 2009;27:612-622.188. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BL. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009;4:525- 534.189. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106:12771-12775. 190. Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, Reynolds SD. A Single Cell Functions as a Tissue-Specific Stem Cell and the In Vitro Niche-Forming Cell. Am J Respir Cell Mol Biol. 2010 Dec 3.191. McQualter JL, Yuen K, Williams B, Bertoncello I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA. 2010;107:1414-1419.192. Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23:2563-2577.193. Avagyan S, Amrani Y, Snoeck HW. Isolation and analysis of mouse hematopoietic stem cells. Methods Enzymol., 2010;476:429-447.194. Bertoncello I, McQualter J. Isolation and clonal assay of adult lung epithelial stem/progenitor cells. Curr Protoc Stem Cell Biol. 2011;Chapter 2:Unit2G.1.195. Vu TH, Alemayehu Y, Werb Z. New insights into saccular development and vascular formation in lung allografts under the renal capsule. Mech Dev.2003;120:305-313.196. Parmar H, Young P, Emerman JT, Neve RM, Dairkee S, Cunha GR A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology. 2002;143:4886-4896.197. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14:1384-1389.198. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L379-99.199. Teisanu RM, Chen H, Matsumoto K, McQualter JL, Potts E, Foster WM, Bertoncello I, Stripp BR. Functional Analysis of Two Distinct Bronchiolar Progenitors during Lung Injury and Repair. Am J Respir Cell Mol Biol. 2010 Jul 23.200. Serrano-Mollar A, Nacher M, Gay-Jordi G, Closa D, Xaubet A, Bulbena O. Intratracheal transplantation of alveolar type II cells reverses bleomycininduced lung fibrosis. Am J Respir Crit Care Med. 2007;176:1261-1268.201. Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18:625-634.202. Brown RH, Walters DM, Greenberg RS, Mitzner W. A method of endotracheal intubation and pulmonary functional assessment for repeated studies in mice. J Appl Physiol. 1999;87:2362-2365.203. MacDonald KD, Chang HY, Mitzner W. An improved simple method of mouse lung intubation. J Appl Physiol. 2009;106:984-987.204. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927-933.205. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538-541.206. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A.Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16:2581-2591. 肺及び気道の上皮細胞が富化されている単離された細胞集団。 肺野に系列決定された細胞が富化されている単離された細胞集団。 前記細胞がNKX2.1を発現する、請求項1又は2に記載の細胞集団。 前記細胞が、NKX2.1、FOXP2、GATA6、P63、ムチン5ac、ムチン2、ムチン5b、FOXJ1、アセチル化チューブリン+、CC−10、pro−SPC、SPB、ムチン 1、リゾチーム、レクチン DBA、ポドプラニン+、アクアポリン 1+、レクチン RCA120+、又はそれらの組み合わせを発現する、請求項1又は2に記載の細胞集団。 90%までの肺及び気道の上皮特異的細胞を含む、請求項1に記載の細胞集団。 80%までの肺野に系列決定された細胞を含む、請求項2に記載の細胞集団。 前記細胞が、気管細胞、気管支細胞、肺胞細胞、又はそれらの組み合わせを含む、請求項1又は2に記載の細胞集団。 細胞が、NKX2.1、GATA6、SOX2、p63、FOXP2、FOXJ1、又はそれらの組み合わせを発現する、肺野に系列決定された細胞の精製された調製物。 前側前腸内胚葉細胞からの肺野に系列決定された細胞の誘導を増進する方法であって、(a)前側前腸内胚葉細胞を、BMP阻害剤又はTGF−βシグナリング阻害剤を用いて、少なくとも1日培養すること、及び(b)前記細胞を、Wntタンパク質若しくはCHIR99021等のその薬理学的アゴニスト、BMP因子、FGFタンパク質、EGFタンパク質、レチノイン酸、又はそれらの組み合わせの存在下において少なくとも5日間培養することを含む、方法。 前記細胞を、Wnt阻害剤及びTGF−βシグナリング阻害剤の存在下で培養することを更に含む、請求項9に記載の方法。 前記細胞を、マトリゲル及び/又は成熟化培地の存在下で培養することを更に含む、請求項9に記載の方法。 前記成熟化培地が、デキサメタゾン、メチルブチリルcAMP、ヒポキサンチン、又はそれらの組み合わせを含む、請求項11に記載の方法。 前記工程(b)の培養が、BMP4の存在下又は非存在下において行われる、請求項9に記載の方法。 前記工程(b)の培養が、レチノイン酸の存在下又は非存在下において行われる、請求項9に記載の方法。 前記工程(b)の培養が、デキサメタゾン、メチルブチリルcAMP、及びヒポキサンチンの存在下又は非存在下において行われる、請求項9に記載の方法。 前記工程(b)の培養が、notch阻害剤の存在下又は非存在下において行われる、請求項9に記載の方法。 前記notch阻害剤がガンマ−セクレターゼ阻害剤DAPTである、請求項16に記載の方法。 SHH阻害剤を添加することを更に含む、請求項9に記載の方法。 前記SHH阻害剤がシクロパミンである、請求項18に記載の方法。 前記Wnt阻害剤がWnt3a阻害剤である、請求項10に記載の方法。 前記Wnt阻害剤がIWP2である、請求項10に記載の方法。 前記BMP阻害剤が、noggin若しくはドルソモルフィン、又はその他の薬理学的な選択的BMP阻害剤である、請求項9に記載の方法。 前記TGF−βシグナリング阻害剤がSB341543である、請求項9に記載の方法。 前記細胞が、NKX2.1、GATA6、SOX2、p63、FOXP2、FOXJ1、又はそれらの組み合わせを発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞が、特徴付けられていない新規のp63発現上皮、杯状細胞、粘膜下腺上皮、クララ細胞、基底細胞、繊毛細胞、I型肺胞細胞、II型肺胞細胞、又はそれらの組み合わせの集団を含む、請求項9に記載の方法。 前記肺野に系列決定された細胞が、Muc5a、Muc2、又はそれらの組み合わせを発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞が、Muc5b、Muc2、又はそれらの組み合わせを発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞がCC10を発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞がp63を発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞が、アセチル化チューブリン、foxj1、又はそれらの組み合わせを発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞が、Muc1、SP−B、pro−SP−C、リゾチーム、レクチン DBA、又はそれらの組み合わせを発現する、請求項9に記載の方法。 前記肺野に系列決定された細胞が、ポドプラニン、アクアポリン 1、アクアポリン 5、T1α、レクチン RCA120、又はそれらの組み合わせを発現する、請求項9に記載の方法。 前記BMP因子がBMP4である、請求項9に記載の方法。 前記FGFタンパク質がFGF10又はFGF7である、請求項9に記載の方法。 細胞が、NKX2.1、GATA6、FOXP2、CGRP、CCSP、FOXJ1、SP−B、SP−C、p63、CC10、MUC5a、MUC1、MUC2、又はそれらの組み合わせを発現する、肺野に系列決定された細胞の精製された調製物。 【課題】ヒト多能性幹細胞(hPSC)からの、肺及び気道の上皮細胞の分化を誘導する方法を提供する。【解決手段】肺及び気道の上皮細胞が富化されている単離された細胞集団。肺野に系列決定された細胞が富化されている単離された細胞集団。前記細胞が、NKX2.1、FOXP2、GATA6、P63、ムチン5ac、ムチン2、ムチン5b、FOXJ1、アセチル化チューブリン+、CC−10、pro−SPC、SPB、ムチン1、リゾチーム、レクチンDBA、ポドプラニン+、アクアポリン1+、レクチンRCA120+、又はそれらの組み合わせを発現する細胞集団。【選択図】図1


ページのトップへ戻る

生命科学データベース横断検索へ戻る