生命科学関連特許情報

タイトル:公開特許公報(A)_環状カルボジイミド化合物、ポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュール
出願番号:2012180258
年次:2013
IPC分類:C07D 273/08,H01L 31/042,C07D 498/10


特許情報キャッシュ

福田 誠 桜井 靖也 JP 2013256485 公開特許公報(A) 20131226 2012180258 20120815 環状カルボジイミド化合物、ポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュール 富士フイルム株式会社 306037311 特許業務法人特許事務所サイクス 110000109 福田 誠 桜井 靖也 JP 2012113227 20120517 C07D 273/08 20060101AFI20131129BHJP H01L 31/042 20060101ALI20131129BHJP C07D 498/10 20060101ALI20131129BHJP JPC07D273/08H01L31/04 RC07D498/10 Z 11 OL 40 4C056 4C072 5F151 4C056AA10 4C056AB04 4C056AC10 4C056AD04 4C056AE10 4C056AF01 4C056FA02 4C056FB01 4C056FC01 4C072AA04 4C072AA06 4C072BB02 4C072BB08 4C072CC04 4C072CC13 4C072DD10 4C072EE09 4C072FF11 4C072GG01 4C072JJ02 4C072UU03 5F151JA05 本発明は、環状カルボジイミド化合物、ならびに、該環状カルボジイミド化合物を用いたポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュールに関する。 太陽電池モジュールは、一般に、太陽光が入射する受光面側にガラス又はフロントシートの上に/透明な充填材料(以下、封止材ともいう。)/太陽電池素子/封止材/バックシート(以下、BSとも言う)がこの順に積層された構造を有している。具体的には、太陽電池素子は一般にEVA(エチレン−酢酸ビニル共重合体)等の樹脂(封止材)で包埋し、更にこの上に太陽電池用保護シートを貼り付けた構造に構成される。また、この太陽電池用保護シートとしては、従来、ポリエステルフィルム、特にポリエチレンテレフタレート(以下、PET)フィルムが使用されている。 しかし、太陽電池用保護シート、その中でも特に最外層となる太陽電池モジュール用のバックシート(BS)は、屋外の風雨などに曝されるような環境下に長期間置かれる状況が想定されるものであるため、優れた耐候性が求められる。 ここで、太陽電池モジュール用のバックシートとしても用いられるPET等のポリエステルフィルムは、優れた耐熱性、機械特性及び耐薬品性などを有しているため、工業的に多く用いられているが、未だ改善の余地がある。このようにポリエステルフィルムの特性を改善する技術として、カルボジイミド化合物をポリエステルの末端カルボキシル基へ反応させることで、耐加水分解性が向上することが知られており、太陽電池バックシート用PETフィルムなどへの応用が検討されている。しかし一般のカルボジイミド化合物は、ポリエステルの末端カルボキシル基との反応により分子量の小さいイソシアネートが生成するため、製造工程で刺激性ガスが揮散し、問題となっている。 近年、環状カルボジイミド化合物が提案され、ポリエステルに添加して溶融製膜したときにイソシアネートガス抑制を可能としたことが報告されている(特許文献1および2参照)。これらの文献には、環状カルボジイミドはポリエステルの末端カルボキシル基と反応して生成したイソシアネートがポリエステルの末端に連結されるため、イソシアネートガス揮散を抑制できることが記載されている。WO2010/071211号公報特開2011−258641号公報 一方、太陽電池モジュールに用いられるポリエステルフィルムは、求められる発電出力が高まってきていることに伴って部分放電電圧を高くする必要があるが、製膜安定性が悪く、部分的に膜厚が薄い部分が存在すると、部分放電電圧が大きく低下してしまう。そのため、太陽電池モジュールに用いられるポリエステルフィルムでは、製膜安定性、すなわち膜厚均一性が必要である。 しかし、本発明の発明者らがこれらの特許文献1および2に記載の環状カルボジイミドを用いて2軸配向ポリエステルフィルムを製膜したところ、ポリエステル末端に連結されたイソシアネート基は、ポリエステルの水酸基末端との反応性に富んでおり、公知の環状カルボジイミドを用いる限り、ポリエステルの著しい増粘を引き起こし使用が困難であることがわかった。 本発明は、前記実情を検討してなされたものであり、本発明が解決しようとする課題は、分子量の小さいイソシアネートを含有しない、増粘なく膜厚均一性が良好なポリエステルフィルムを提供することである。また、このようなポリエステルフィルムの製造に用いることができ、製膜時に増粘を抑制でき、イソシアネートガス発生を抑制できる環状カルボジイミド化合物を提供することである。 本発明の発明者らは、カルボジイミド基の第一窒素と第二窒素とがともにアリーレン基に隣接し、該アリーレン基どうしが結合基により結合されている環状構造を含み、前記アリーレン基のカルボジイミド基に対してオルト位に特定の嵩高い置換基を有する化合物を用いることによって、イソシアネートガス発生を抑制でき、かつ、ポリエステルの末端に連結したイソシアネートとポリエステルの水酸基末端との反応を抑制することで製膜時に増粘も抑制できることを見出し、以下の構成を有する本発明を提供するに至った。[1] 下記一般式(O−1)または一般式(O−2)で表されることを特徴とする環状カルボジイミド化合物。(一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R1〜R8は互いに結合して環を形成してもよい。X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L1は2価の連結基を表す。)(一般式(O−2)中、R11、R15、R21およびR25は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R12〜R14、R16〜R18、R22〜R24およびR26〜R28は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R11〜R28は互いに結合して環を形成してもよい。X11、X12、X21およびX22は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L2は4価の連結基を表す。)[2] [1]に記載の環状カルボジイミド化合物は、前記一般式(O−1)中、R2およびR6がともに水素原子であることが好ましい。[3] [1]または[2]に記載の環状カルボジイミド化合物は、前記一般式(O−1)および(O−2)中、R1およびR5、ならびに、R11、R15、R21およびR25がそれぞれ独立に2級もしくは3級アルキル基、または、アリール基を表すことが好ましい。[4] 下記一般式(O−1)または一般式(O−2)で表される環状カルボジイミド化合物と、ポリエステルを含むことを特徴とするポリエステルフィルム。(一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R1〜R8は互いに結合して環を形成してもよい。X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L1は2価の連結基を表す。)(一般式(O−2)中、R11、R15、R21およびR25は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R12〜R14、R16〜R18、R22〜R24およびR26〜R28は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R11〜R28は互いに結合して環を形成してもよい。X11、X12、X21およびX22は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L2は4価の連結基を表す。)[5] [4]に記載のポリエステルフィルムは、前記一般式(O−1)中、R2およびR6がともに水素原子であることが好ましい。[6] [4]または[5]に記載のポリエステルフィルムは、前記一般式(O−1)および(O−2)中、R1およびR5、ならびに、R11、R15、R21およびR25がそれぞれ独立に2級もしくは3級アルキル基、または、アリール基を表すことが好ましい。[7] [4]〜[6]のいずれか一項に記載のポリエステルフィルムは、前記ポリエステルに対して、前記環状カルボジイミド化合物を0.05〜5質量%含むことが好ましい。[8] [4]〜[7]のいずれか一項に記載のポリエステルフィルムは、前記ポリエステルのカルボン酸由来の成分が、芳香族二塩基酸又はそのエステル形成性誘導体由来の成分であることが好ましい。[9] [4]〜[8]のいずれか一項に記載のポリエステルフィルムは、2軸配向されたことが好ましい。[10] [4]〜[9]のいずれか一項に記載のポリエステルフィルムを用いたことを特徴とする太陽電池モジュール用バックシート。[11] [10]に記載の太陽電池モジュール用バックシートを用いた太陽電池モジュール。 本発明によれば、分子量の小さいイソシアネートを含有しない、増粘なく膜厚均一性が良好なポリエステルフィルムを提供することができる。また、このような本発明のポリエステルフィルムの製造に用いることができ、製膜時に増粘を抑制でき、イソシアネートガス発生を抑制できる環状カルボジイミド化合物を提供することができる。 以下、本発明のポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュールについて詳細に説明する。 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 なお、分子量の小さいイソシアネートとしては、例えば分子量300以下のイソシアネートを挙げることができるが、本発明はこの分子量の範囲に限定されるものではない。[ポリエステルフィルム] 本発明のポリエステルフィルム(以下、本発明のフィルムとも言う)は、下記一般式(O−1)または一般式(O−2)で表される環状カルボジイミド化合物と、ポリエステルを含むことを特徴とすることを特徴とする。(一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R1〜R8は互いに結合して環を形成してもよい。X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L1は2価の連結基を表す。)一般式(O−2)(一般式(O−2)中、R11、R15、R21およびR25は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R12〜R14、R16〜R18、R22〜R24およびR26〜R28は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R11〜R28は互いに結合して環を形成してもよい。X11、X12、X21およびX22は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L2は4価の連結基を表す。) いかなる理論に拘泥するものでもないが、ポリエステルとカルボジイミド化合物を含む組成物を約280℃で溶融押出しするとき、例えば従来公知の環状芳香族カルボジイミドをPETの末端封止剤として用いると、下記反応スキームのように(1)カルボジイミド基とPET−COOHの反応と、(2)イソシアネート基とPET−OHの反応が起こり、増粘し、ゲル生成すると推定される。 上記反応スキームにより増粘し、ゲル生成したことによって、得られるポリエステルフィルムの膜厚均一性に悪影響を与える要因となる。 これに対し、本発明の構成のポリエステルフィルムは、カルボジイミドに隣接するアリーレン基のカルボジイミド基に対してオルト位に特定の嵩高い置換基を有する環状カルボジイミド化合物を用いてポリエステルフィルムを製膜することで、上記反応スキームのPET−OHとの反応を抑制できることを見出し、環状カルボジイミド化合物を添加したときの膜厚均一性への悪影響を抑制することができる。その結果、分子量の小さいイソシアネートを含有しない、増粘なく膜厚均一性が良好なポリエステルフィルムを提供することができる。また、製造工程で記載したイソシアネートガスがポリエステルフィルム中に含まれると、太陽電池モジュール用バックシートに用いたときに湿熱経時後の機能層との密着性が悪化する問題が生じるとの知見があるところ、本発明の環状カルボジイミドを用いることでこのような問題も解決することができる。 以下、本発明の環状カルボジイミド化合物を含む本発明のポリエステルフィルムに用いられる材料と、本発明のポリエステルフィルムの構成および特性と、本発明のポリエステルフィルムを製造する方法について説明するが、本発明は以下の態様に限定されるものではない。 なお、本発明の効果を阻害しない範囲内であれば、本発明のポリエステルフィルムには、各種添加剤、例えば、ポリカルボジイミド化触媒、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、紫外線吸収剤、難燃剤、難燃助剤、顔料および染料などが添加されてもよい。<ポリエステルフィルムに用いられる材料>(ポリエステル) 本発明のポリエステルフィルムは、ポリエステルを含む。前記ポリエステルは特に限定されるものではないが、以下に好ましい態様を説明する。 前記ポリエステルの固有粘度(IV)は、0.5〜0.9dl/gであることが、耐加水分解性と膜厚均一性を両立する観点から好ましい。前記ポリエステルの固有粘度をこのような範囲とすることで、ポリエステル末端数、すなわち架橋点を少なくすることができ、ゲル生成を抑制することができる。 ゲル生成を抑制し、耐加水分解性と膜厚均一性を両立し、さらにフィルムとして成膜した後の固有粘度を後述する好ましい範囲に設定する観点、及び、後述するカルボジイミドとの合成時における攪拌性の観点から、0.55〜0.85dl/gが更に好ましく、0.6〜0.84dl/gが特に好ましい。 ポリエステルの固有粘度(IV)は、フィルム製膜時に使用するポリエステルが2種以上である場合(特開2011−256337号公報の回収ポリエステルを使用する場合など)、すべてのポリエステルを混合したポリエステルの固有粘度が、上記範囲を満たすことが好ましい。 ポリエステルの固有粘度(IV)は、ポリエステルをオルトクロロフェノールに溶解し、25℃で測定した溶液粘度から、下式より固有粘度を得た。 ηsp/C=[η]+K[η]2・C ここで、ηsp=(溶液粘度/溶媒粘度)−1であり、Cは、溶媒100mlあたりの溶解ポリマー重量であり(本測定では1g/100mlとする)、Kはハギンス定数(0.343とする)であり、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定した。 前記ポリエステルは、飽和ポリエステルであることが好ましい。このように飽和ポリエステルを用いることで、不飽和のポリエステルを用いたフィルムと比べて力学強度の観点で優れるポリエステルフィルムを得ることができる。 前記ポリエステルは、高分子の途中に、−COO−結合、又は、−OCO−結合を有する。また、ポリエステルの末端基は、OH基、COOH基又はこれらが保護された基(ORX基、COORX基(RXは、アルキル基等任意の置換基)であって、芳香族二塩基酸又はそのエステル形成性誘導体と、ジオール又はそのエステル形成性誘導体と、から合成される線状飽和ポリエステルであることが好ましい。前記線状飽和ポリエステルとしては、例えば、2009−155479号公報や特開2010−235824号公報に記載のものを適宜用いることができる。 前記線状飽和ポリエステルの具体例として、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレート、このうち、ポリエチレンテレフタレート又はポリエチレン−2,6−ナフタレートが、力学的物性及びコストのバランスの点で特に好ましく、ポリエチレンテレフタレートがより特に好ましい。なお、ポリエチレン−2,6−ナフタレートやポリブチレンテレフタレートは製膜時に230℃以上に加熱して溶融製膜するのに対し、PETでは250℃以上に加熱して溶融製膜するため、さらにイソシアネートが生成しやすいが、本発明のポリエステルフィルムでは、前記(A)ポリエステルがPETの場合でもイソシアネートの残留量を低減させることができる。 前記ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、前記ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。また、前記ポリエステルとして、溶融時に異方性を形成することができる結晶性のポリエステルを用いてもよい。 前記ポリエステル中の末端カルボキシル基含量(前記ポリエステルのカルボン酸価、以下、AVともいう)は、前記ポリエステルに対して25eq/ton以下が好ましく、20eq/ton以下がより好ましく、特に好ましくは16eq/ton以下であり、より特に好ましくは15eq/ton以下である。カルボキシル基含量が25eq/ton以下であると、前記環状カルボジイミド化合物と組み合わせることでポリエステルフィルムの耐加水分解性、耐熱性を保持し、湿熱経時したときの強度低下を小さく抑制することができる。前記末端カルボキシル基含量の下限は、本発明のポリエステルフィルムを太陽電池モジュール用バックシートとするときに形成される層(例えば白色層)との間の密着性(接着性)を保持する点で、10eq/ton以上が望ましい。前記ポリエステル中の末端カルボキシル基含量は、重合触媒種、重合時間、製膜条件(製膜温度や時間)によって調整することが可能である。前記カルボキシル基含量は、H.A.Pohl,Anal.Chem.26(1954)2145に記載の方法に従って、滴定法にて測定することができる。具体的には、ポリエステルを、ベンジルアルコールに205℃で溶解し、フェノールレッド指示薬を加え、水酸化ナトリウムの水/メタノール/ベンジルアルコール溶液で滴定することで、その適定量からカルボン酸価(eq/ton)を算出することができる。 前記ポリエステル中の末端ヒドロキシル基含量は、前記ポリエステルに対して120eq/ton以下が好ましく、より好ましくは90eq/ton以下である。ヒドロキシル基含量が120eq/ton以下であると、後述の特定の位置に嵩高い官能基を有する環状カルボジイミドとヒドロキシル基の反応が抑制され、カルボキシル基と優先的に反応し、カルボン酸価をより低下させることができる。ヒドロキシル基含量の下限は、上層との密着性の観点で、20eq/tonが望ましい。前記ポリエステル中のヒドロキシル基含量は、重合触媒種、重合時間、製膜条件(製膜温度や時間)によって調整することが可能である。前記末端ヒドロキシル基含量は、重水素化ヘキサフルオロイソプロパノール溶媒を用いて、1H−NMRにより測定した値を用いることできる。 前記ポリエステルの分子量は、耐熱性や粘度の観点から、重量平均分子量(Mw)5000〜30000であることが好ましく、8000〜26000であることが更に好ましく、12000〜24000であることが特に好ましい。前記ポリエステルの重量平均分子量は、ヘキサフルオロイソプロパノールを溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリメチルメタクリレート(PMMA)換算の値を用いることができる。 前記ポリエステルは公知の方法によって合成することができる。例えば、公知の重縮合法や開環重合法などによってポリエステルを合成することができ、エステル交換反応及び直接重合による反応のいずれでも適用することができる。 本発明で用いるポリエステルが、芳香族二塩基酸又はそのエステル形成性誘導体と、ジオール又はそのエステル形成性誘導体とを主成分とする縮合反応により得られる重合体ないしは共重合体である場合には、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とを、エステル化反応又はエステル交換反応させ、次いで重縮合反応させることによって製造することができる。また、原料物質や反応条件を選択することにより、ポリエステルのカルボン酸価や固有粘度を制御することができる。なお、エステル化反応又はエステル交換反応及び重縮合反応を効果的に進めるために、これらの反応時に重合触媒を添加することが好ましい。 前記ポリエステルを重合する際の重合触媒としては、カルボキシル基含量を所定の範囲以下に抑える観点から、Sb系、Ge系、及びTi系の化合物を用いることが好ましいが、特にTi系化合物が好ましい。Ti系化合物を用いる場合、Ti系化合物を1ppm以上30ppm以下、より好ましくは3ppm以上15ppm以下の範囲で触媒として用いることにより重合する態様が好ましい。Ti系化合物の割合が前記範囲内であると、末端カルボキシル基を下記範囲に調整することが可能であり、ポリマー基材の耐加水分解性を低く保つことができる。 Ti系化合物を用いたポリエステルの合成には、例えば、特公平8−301198号公報、特許第2543624、特許第3335683、特許第3717380、特許第3897756、特許第3962226、特許第3979866、特許第3996871、特許第4000867、特許第4053837、特許第4127119、特許第4134710、特許第4159154、特許第4269704、特許第4313538等に記載の方法を適用できる。 前記ポリエステルは、重合後に固相重合されていることが好ましい。これにより、好ましいカルボン酸価を達成することができる。前記固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、送り出す方法)でもよいし、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固層重合には、特許第2621563、特許第3121876、特許第3136774、特許第3603585、特許第3616522、特許第3617340、特許第3680523、特許第3717392、特許第4167159等に記載の方法を適用することができる。 前記固相重合の温度は、170℃以上240℃以下が好ましく、より好ましくは180℃以上230℃以下であり、さらに好ましくは190℃以上220℃以下である。また、固相重合時間は、5時間以上100時間以下が好ましく、より好ましくは10時間以上75時間以下であり、さらに好ましくは15時間以上50時間以下である。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。(環状カルボジイミド化合物) 本発明のポリエステルフィルムは、前記一般式(O−1)または一般式(O−2)で表されることを特徴とする環状カルボジイミド化合物(以下、本発明の環状カルボジイミド化合物とも言う)を含む。 以下、本発明の環状カルボジイミド化合物の好ましい構造について、前記一般式(O−1)と前記一般式(2)の順に説明する。 まず、前記一般式(O−1)で表される環状カルボジイミド化合物について説明する。 一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R1〜R8は互いに結合して環を形成してもよい。X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L1は2価の連結基を表す。 前記一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表し、アルキル基またはアリール基を表すことが好ましく、2級もしくは3級アルキル基またはアリール基を表すことがポリエステルの末端に連結したイソシアエネートとポリエステルの水酸基末端の反応を抑制し、増粘を抑制する観点からより好ましく、2級アルキル基を表すことが特に好ましい。 R1およびR5が表すアルキル基は、炭素数1〜20のアルキル基であることが好ましく、炭素数1〜12のアルキル基であることがより好ましく、炭素数2〜6のアルキル基であることが特に好ましい。R1およびR5が表すアルキル基は直鎖であっても分枝であっても環状であってもよいが、分枝または環状であることが、ポリエステルの末端に連結したイソシアエネートとポリエステルの水酸基末端の反応を抑制し、増粘を抑制する観点から好ましい。R1およびR5が表すアルキル基は2級または3級アルキル基であることが好ましく、2級アルキル基であることがより好ましい。R1およびR5が表すアルキル基は、メチル基、エチル基、n−プロピル基、sec−プロピル基、iso−プロピル基、n−ブチル基、tert−ブチル基、sec−ブチル基、iso−ブチル基、n−ペンチル基、sec−ペンチル基、iso−ペンチル基、n−ヘキシル基、sec−ヘキシル基、iso−ヘキシル基、シクロヘキシル基、などを挙げることができ、その中でもiso−プロピル基、tert−ブチル基、iso−ブチル基、iso−ペンチル基、iso−ヘキシル基、シクロヘキシル基が好ましく、iso−プロピル基、シクロヘキシル基、tert−ブチル基がより好ましく、iso−プロピル基およびシクロヘキシル基が特に好ましい。 R1およびR5が表すアルキル基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。但し、R1およびR5が表すアルキル基は、カルボン酸との反応性の観点から、さらに置換基を有さないことが好ましい。 R1およびR5が表すアリール基は、炭素数6〜20のアリール基であることが好ましく、炭素数6〜12のアリール基であることがより好ましく、炭素数6のアリール基であることが特に好ましい。R1およびR5が表すアリール基は、R1とR2が縮合またはR5とR6が縮合して形成されたアリール基であってもよいが、R1およびR5は、それぞれR2およびR6と縮合して環を形成しないことが好ましい。R1およびR5が表すアリール基は、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基がより好ましい。 R1およびR5が表すアリール基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。但し、R1およびR5が表すアリール基は、カルボン酸との反応性の観点から、さらに置換基を有さないことが好ましい。 R1およびR5が表すアルコキシ基は、炭素数1〜20のアルコキシ基であることが好ましく、炭素数1〜12のアルコキシ基であることがより好ましく、炭素数2〜6のアルコキシ基であることが特に好ましい。R1およびR5が表すアルコキシ基は直鎖であっても分枝であっても環状であってもよいが、分枝または環状であることが、ポリエステルの末端に連結したイソシアエネートとポリエステルの水酸基末端の反応を抑制し、増粘を抑制する観点から好ましい。R1およびR5が表すアルコキシ基の好ましい例は、R1およびR5が表すアルキル基の末端に−O−が連結した基を挙げることがあり、好ましい範囲も同様にR1およびR5が表す好ましいアルキル基の末端に−O−が連結した基である。 R1およびR5が表すアルコキシ基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。但し、R1およびR5が表すアルコキシ基は、カルボン酸との反応性の観点から、さらに置換基を有さないことが好ましい。 R1およびR5は、同じであっても異なっていてもよいが、コストの観点から同じであることが好ましい。 前記一般式(O−1)中、R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表し、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基であることが好ましく、水素原子、炭素数1〜6のアルキル基がより好ましく、水素原子が特に好ましい。 R2〜R4およびR6〜R8が表すアルキル基、アリール基またはアルコキシ基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。 本発明の環状カルボジイミド化合物は、前記一般式(O−1)中、R2およびR6がともに水素原子であることが、R1およびR5に嵩高い置換基を導入しやすい観点から好ましい。ここで、WO2010/071211号公報のp14およびp15には、前記一般式(O−1)においてR2およびR6に相当する部位(カルボジイミド基に対してメタ位)にアルキル基やアリール基が置換した化合物が例示されているが、これらの化合物はポリエステルの末端に連結したイソシアネートとポリエステルの水酸基末端との反応を抑制することができない上、前記一般式(O−1)においてR2およびR6に相当する部位(カルボジイミド基に対してオルト位)に置換基を導入することが困難である。 前記一般式(O−1)中、R1〜R8は互いに結合して環を形成してもよい。このときに形成される環は特に制限はないが、芳香族環であることが好ましい。例えば、R1〜R4の2以上が互いに結合して縮合環を形成してもよく、R1〜R4が置換しているベンゼン環とともに炭素数10以上のアリーレン基やヘテロアリーレン基を形成してもよい。このときに形成される炭素数10以上のアリーレン基としては、ナフタレンジイル基などの炭素数10〜15の芳香族基が挙げられる。 同様に、例えば、R5〜R8の2以上が互いに結合して縮合環を形成してもよく、R5〜R8が置換しているベンゼン環とともに炭素数10以上のアリーレン基やヘテロアリーレン基を形成してもよく、そのときの好ましい範囲はR1〜R4が置換しているベンゼン環とともに炭素数10以上のアリーレン基やヘテロアリーレン基を形成するときの好ましい範囲と同様である。 但し、本発明の環状カルボジイミド化合物は、前記一般式(O−1)中、R1〜R8は互いに結合して環を形成しないことが好ましい。 前記一般式(O−1)中、X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−および−CH2−から選択される少なくとも1種を表し、その中でも−O−、−CO−、−S−、−SO2−、−NH−であることが好ましく、−O−、−S−であることが合成容易性の観点からより好ましい。 前記一般式(O−1)中、L1は2価の連結基を表し、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2価の炭素数1〜20の脂肪族基、2価の炭素数3〜20の脂環族基、2価の炭素数5〜15の芳香族基、またはこれらの組み合わせであることが好ましく、2価の炭素数1〜20の脂肪族基であることがより好ましい。 L1が表す2価の脂肪族基として、炭素数1〜20のアルキレン基が挙げられる。炭素数1〜20のアルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられ、メチレン基、エチレン基、プロピレン基がより好ましく、エチレン基が特に好ましい。これらの脂肪族基は置換されていてもよい。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。 L1が表す2価の脂環族基として、炭素数3〜20のシクロアルキレン基が挙げられる。炭素数3〜20のシクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。これらの脂環族基は置換されていてもよい。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。 L1が表す2価の芳香族基として、へテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基が挙げられる。炭素数5〜15のアリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。これらの芳香族基は置換されていてもよい。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。 前記一般式(O−1)中、カルボジイミド基を含む環状構造中の原子数は、好ましくは8〜50、より好ましくは10〜30、さらに好ましくは10〜20、特に、10〜15が好ましい。 ここで、カルボジイミド基を含む環状構造中の原子数とは、カルボジイミド基を含む環状構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合があるためである。また反応性の観点よりは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生するためである。かかる観点より前記一般式(O−1)中、環状構造中の原子数は好ましくは、10〜30、より好ましくは10〜20、特に好ましくは10〜15の範囲が選択される。 次に、前記一般式(O−2)で表される環状カルボジイミド化合物について説明する。 一般式(O−2)中、R11、R15、R21およびR25は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R12〜R14、R16〜R18、R22〜R24およびR26〜R28は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R11〜R28は互いに結合して環を形成してもよい。X11、X12、X21およびX22は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L2は4価の連結基を表す。) 前記一般式(O−2)中、R11、R15、R21およびR25の好ましい範囲は、前記一般式(O−1)中のR1およびR5の好ましい範囲と同様である。 R11、R15、R21およびR25が表すアリール基は、R11とR12が縮合、R15とR16が縮合、R21とR22が縮合またはR25とR26が縮合して形成されたアリール基であってもよいが、R11、R15、R21およびR25は、それぞれR12、R16、R22およびR26と縮合して環を形成しないことが好ましい。 R11、R15、R21およびR25は、同じであっても異なっていてもよいが、コストの観点から同じであることが好ましい。 前記一般式(O−2)中、R12〜R14、R16〜R18、R22〜R24およびR26〜R28の好ましい範囲は、前記一般式(O−1)中のR2〜R4およびR6〜R8の好ましい範囲と同様である。 R12〜R14、R16〜R18、R22〜R24およびR26〜R28中、R12、R16、R22およびR26がともに水素原子であることが、R11、R15、R21およびR25に嵩高い置換基を導入しやすい観点から好ましい。 前記一般式(O−2)中、R11〜R28は互いに結合して環を形成してもよく、好ましい環の範囲は前記一般式(O−1)中、R1〜R8が互いに結合して形成する環の範囲と同様である。 前記一般式(O−2)中、X11、X12、X21およびX22の好ましい範囲は、前記一般式(O−1)中のX1およびX2の好ましい範囲と同様である。 前記一般式(O−2)中、L2は4価の連結基を表し、それぞれヘテロ原子ならびに置換基を含んでいてもよい、4価の炭素数1〜20の脂肪族基、4価の炭素数3〜20の脂環族基、4価の炭素数5〜15の芳香族基、またはこれらの組み合わせであることが好ましく、4価の炭素数1〜20の脂肪族基であることがより好ましい。 L2が表す4価の脂肪族基として、炭素数1〜20のアルカンテトライル基などが挙げられる。炭素数1〜20のアルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられ、メタンテトライル基、エタンテトライル基、プロパンテトライル基がより好ましく、エタンテトライル基が特に好ましい。これら脂肪族基は置換基を含んでいてもよい。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。 L2が表す4価の脂環族基として、脂環族基として、炭素数3〜20のシクロアルカンテトライル基が挙げられる。炭素数3〜20のシクロアルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これら脂環族基は置換基を含んでいてもよい。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリーレン基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。 L2が表す4価の芳香族基として、へテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアレーンテトライル基が挙げられる。炭素数5〜15のアレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていてもよい。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。 前記一般式(O−2)中、4価の連結基であるL2を介して、カルボジイミド基を含む環状構造が2つ含まれる。 前記一般式(O−2)中における各カルボジイミド基を含む環状構造中の原子数の好ましい範囲はそれぞれ、前記一般式(O−1)中におけるカルボジイミド基を含む環状構造中の原子数の好ましい範囲と同様である。 本発明の環状カルボジイミド化合物は、分子内に2つ以上のカルボジイミド基の第一窒素と第二窒素とが連結基により結合した環構造を有さない芳香族カルボジイミドであること、すなわち本発明の環状カルボジイミド化合物は単環であり、前記一般式(O−1)で表されることが、増粘し難い観点から好ましい。 但し、揮散を抑制でき、製造時のイソシアネートガスの発生を抑制できる観点からは、本発明の環状カルボジイミド化合物は環状構造を複数有し、前記一般式(O−2)で表されることも好ましい。 本発明の環状カルボジイミド化合物の分子量が、400以上であると、揮散性が小さく、製造時のイソシアネートガスの発生を抑制できるため好ましい。また、本発明の環状カルボジイミド化合物の分子量の上限は本発明の効果を損なわない限り特に限定はないが、カルボン酸との反応性の観点から、1500以下が好ましい。 本発明の環状カルボジイミド化合物の分子量は、500〜1200であることがより好ましい。 前記一般式(O−1)または一般式(O−2)で表されることを特徴とする環状カルボジイミド化合物の具体例、すなわち本発明の環状カルボジイミド化合物の具体例としては、以下の化合物が挙げられる。但し、本発明は以下の具体例により限定されるものではない。 本発明の環状カルボジイミド化合物は、芳香環に隣接して−N=C=N−で表される構造(カルボイジイミド基)を少なくとも1つ有する化合物であり、例えば、適当な触媒の存在下に、有機イソシアネートを加熱し、脱炭酸反応で製造できる。また、本発明の環状カルボジイミド化合物は、特開2011−256337号公報に記載の方法などを参考にして合成することができる。 本発明の環状カルボジイミド化合物を合成するにあたり、カルボジイミド基の第一窒素と第二窒素に隣接するアリーレン基のオルト位に特定の嵩高い置換基を導入する方法としては特に制限はないが、例えば既知の方法でアルキルベンゼンをニトロ化することで、アルキル基が置換されたニトロベンゼンを合成することができ、それを元にWO2011/158958に記載の方法で環状カルボジイミドを合成することができる。 ここで、ポリエステルフィルムの耐加水分解性を高めるためには、ポリエステルの多くのカルボキシル末端を封止することが好ましいとも考えられる。しかしながら、ポリエステルに対して、多量の本発明の環状カルボジイミド化合物のような環状カルボジイミド化合物を投入すると、ゲル生成し、ポリエステルフィルムの膜厚均一性が不十分となりやすい。そこで、本発明の環状カルボジイミド化合物の添加量を特定の範囲に制御することで、ポリエステルフィルムの耐加水分解性と膜厚均一性を好ましい範囲に制御しやすい。なお、副次的反応として多量に投入した環状カルボジイミド化合物は未反応の環状カルボジイミド化合物として残留するだけでなく、水分やポリエステルの末端基やその他遊離酸と反応して、イソシアネートに分解されることもある。 本発明のポリエステルフィルムは、前記ポリエステルに対して、本発明の環状カルボジイミド化合物を0.05〜5質量%含むことが好ましい。下限値以上含むことが、本発明のポリエステルフィルムの耐加水分解性および膜厚均一性を改善する観点から好ましい。上限値以下含むことが、ゲル化を抑制し、本発明のポリエステルフィルムの膜厚均一性を改善する観点から好ましい。 本発明のポリエステルフィルムは、前記ポリエステルに対して、本発明の環状カルボジイミド化合物を0.1〜2質量%含むことがより好ましく、0.1〜1質量%含むことが特に好ましい。 本発明のポリエステルフィルムは、本発明の趣旨に反しない限りにおいて、本発明の環状カルボジイミド化合物以外のカルボジイミド化合物を含むことを拒むものではないが、本発明のポリエステルフィルム中に含まれるカルボジイミド化合物の90%以上が本発明の環状カルボジイミド化合物であることが好ましく、95%以上が本発明の環状カルボジイミド化合物であることがより好ましく、100%が本発明の環状カルボジイミド化合物であることが特に好ましい。<ポリエステルフィルムの構成および特性> 本発明のポリエステルフィルムの厚みは、用途によって異なるが、太陽電池モジュール用バックシートの部材として用いる場合には、25μm〜300μmであることが好ましく、120μm以上300μm以下であることがより好ましい。厚みが25μm以上であることで、十分な力学強度が得られ、300μm以下とすることで、コスト上、有利である。 本発明のポリエステルフィルムは延伸されていることが好ましく、二軸延伸されていることがさらに好ましく、平面二軸延伸されていることがチューブラーなどの延伸と比較して特に好ましく、逐次二軸延伸されていることがより特に好ましい。本発明のポリエステルフィルムのMD配向度、及び、TD配向度は、それぞれ0.14以上であることが好ましく、0.155以上が更に好ましく、0.16以上が特に好ましい。各配向度が0.14以上であると、非晶鎖の拘束性が向上し(運動性が低下)、耐加水分解性が向上する。前記MD及びTD配向度は、アッベの屈折率計を用い、光源としては単色光ナトリウムD線を用い、マウント液としてはヨウ化メチレンを用いて25℃雰囲気中で二軸配向フィルムのx、y、z方向の屈折率を測定し、MD配向度:Δn(x−z)、TD;Δn(y−z)から算出することができる。 また、本発明のポリエステルフィルムの固有粘度(IV)は、0.70〜0.94dl/gが好ましく、0.71〜0.84dl/gが更に好ましく、0.72〜0.84dl/gが特に好ましい。 ポリエステルフィルムの固有粘度は上記下限値以下であることが、製膜性を改善し、膜厚均一性を改善する観点から好ましい。<ポリエステルフィルムの製造方法>(フィルム形成工程) フィルム形成工程においては、本発明のポリエステルフィルムを形成するための樹脂組成物に含まれる前記ポリエステルおよび前記環状カルボジイミド化合物を溶融させた溶融体をギアポンプや濾過器を通し、その後、ダイを介して冷却ロールに押出し、これを冷却固化させることで(未延伸)フィルムを形成することができる。なお、押出された溶融体は、静電印加法を用いて冷却ロールに密着させることができる。この際、冷却ロールの表面温度は、おおよそ10℃〜40℃とすることができる。(延伸工程) 前記フィルム形成工程によって形成された(未延伸)フィルムは、延伸工程において、延伸処理を施すことができる。前記延伸工程においては、冷却ロールで冷却固化させた(未延伸)フィルムに1つまたは2つの方向に延伸されることが好ましく、2つの方向に延伸されることがより好ましい。前記2つの方向への延伸(二軸延伸)は、長手方向(MD:Machine Direction)の延伸(以下「縦延伸」ともいう)及び幅方向(TD:Transverse Direction)の延伸(以下、「横延伸」ともいう)であることが好ましい。当該縦延伸、横延伸は各々1回で行っても良く、複数回に亘って実施しても良く、同時に縦、横に延伸してもよい。 前記延伸処理は、フィルムのガラス温度(Tg)℃〜(Tg+60)℃で行うのが好ましく、より好ましくはTg+3℃〜Tg+40℃、さらに好ましくはTg+5℃〜Tg+30℃である。 好ましい延伸倍率は少なくとも一方に280%〜500%、より好ましくは300%〜480%、さらに好ましくは320%〜460%である。二軸延伸の場合、縦、横均等に延伸してもよいが、一方の延伸倍率を他方より大きくし不均等に延伸するほうがより好ましい。縦(MD)、横(TD)いずれを大きくしてもよい。ここで云う延伸倍率は、以下の式を用いて求めたものである。 延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/(延伸前の長さ) 前記二軸延伸処理は、例えば、フィルムのガラス転移温度である(Tg1)℃〜(Tg1+60)℃で長手方向に1回もしくは2回以上、合計の倍率が3倍〜6倍になるよう延伸し、その後、(Tg1)℃〜(Tg+60)℃で幅方向に倍率が3〜5倍になるよう施すことができる。 前記二軸延伸処理は出口側の周速を速くした2対以上のニップロールを用いて、長手方向に延伸することができ(縦延伸)、フィルムの両端をチャックで把持しこれを直交方向(長手方向と直角方向)に広げておこなうことができる(横延伸)。 前記延伸工程においては、延伸処理の前又はその後、好ましくは延伸処理後に、フィルムに熱処理を施すことができる。前記熱処理を施すことによって、微結晶を生成し、力学特性や耐久性を向上させることができる。180℃〜210℃程度(更に好ましくは、185℃℃〜210℃)で1秒間〜60秒間(更に好ましくは2秒間〜30秒間)の熱処理をフィルムに施してもよい。 前記延伸工程においては、前記熱処理後、熱緩和処理を施すことができる。前記熱緩和処理とは、フィルムに対して応力緩和のために熱を加えて、フィルムを収縮させる処理である。熱緩和処理は、フィルムのMD及びTDの両方向に施すことが好ましい。前記熱緩和処理における諸条件は、熱処理温度より低い温度で処理することが好ましく、130℃〜205℃が好ましい。また、前記熱緩和処理は、フィルムの熱収縮率(150℃)がMD及びTDがいずれも1〜12%であることが好ましく、1〜10%が更に好ましい。尚、熱収縮率(150℃)は、測定方向350mm、幅50mmのサンプルを切り出し、サンプルの長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調整されたオーブンに一端を固定、他端をフリーで30分間放置し、その後、室温で標点間距離を測定し、この長さをL(mm)とし、かかる測定値を用いて、下記式にて熱収縮率を求めることができる。 150℃熱収縮率(%)=100×(300−L)/300 また、熱収縮率が正の場合は縮みを、負は伸びを表わす。 以上説明したように、上述の方法によって、耐加水分解性に優れたフィルムを作製することができる。本発明のポリエステルフィルムは、後述するように太陽電池モジュールの保護シート(太陽電池モジュール用バックシート)として好適に用いることができるのみならず、他の用途にも用いることができる。 また、本発明のフィルムは、その上に、COOH、OH、SO3H、NH2及びその塩から選ばれる少なくとも一つの官能基を含む塗布層を設けた積層体として用いることもできる。[太陽電池モジュール用バックシート] 本発明の太陽電池モジュール用バックシートは、本発明のポリエステルフィルムを含むことを特徴とする。本発明のポリエステルフィルムを太陽電池モジュール用バックシートに用いると、層間の密着性の問題が少なくなり、特に湿熱経時後の層間の密着性を大きく改善することができる。 本発明の太陽電池モジュール用バックシートは、例えば、一軸延伸後及び/又は二軸延伸後のポリエステルフィルムに下記の機能性層を塗設してもよい。塗設には、ロールコート法、ナイフエッジコート法、グラビアコート法、カーテンコート法等の公知の塗布技術を用いることができる。 また、これらの塗設前に表面処理(火炎処理、コロナ処理、プラズマ処理、紫外線処理等)を実施してもよい。さらに、粘着剤を用いて貼り合わせることも好ましい。−易接着性層− 本発明のポリエステルフィルムは、太陽電池モジュールを構成する場合に太陽電池素子が封止材で封止された電池側基板の該封止材と向き合う側に、易接着性層を有していることが好ましい。封止材(特にエチレン−酢酸ビニル共重合体)を含む被着物(例えば太陽電池素子が封止材で封止された電池側基板の封止材の表面)に対して接着性を示す易接着性層を設けることにより、バックシートと封止材との間を強固に接着することができる。具体的には、易接着性層は、特に封止材として用いられるEVA(エチレン−酢酸ビニル共重合体)との接着力が10N/cm以上、好ましくは20N/cm以上であることが好ましい。 さらに、易接着性層は、太陽電池モジュールの使用中にバックシートの剥離が起こらないことが必要であり、そのために易接着性層は高い耐加水分解性を有することが望ましい。(1)バインダー 本発明における易接着性層はバインダーの少なくとも1種を含有することができる。 バインダーとしては、例えば、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィン等を用いることができる。中でも、耐久性の観点から、アクリル樹脂、ポリオレフィンが好ましい。また、アクリル樹脂として、アクリルとシリコーンとの複合樹脂も好ましい。好ましいバインダーの例として、以下のものを挙げることができる。 前記ポリオレフィンの例として、ケミパールS−120、同S−75N(ともに三井化学(株)製)が挙げられる。前記アクリル樹脂の例として、ジュリマーET−410、同SEK−301(ともに日本純薬工業(株)製)が挙げられる。また、前記アクリルとシリコーンとの複合樹脂の例として、セラネートWSA1060、同WSA1070(ともにDIC(株)製)、及びH7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)が挙げられる。 前記バインダーの量は、0.05〜5g/m2の範囲が好ましく、0.08〜3g/m2の範囲が特に好ましい。バインダー量は、0.05g/m2以上であることでより良好な接着力が得られ、5g/m2以下であることでより良好な面状が得られる。(2)微粒子 本発明における易接着性層は、微粒子の少なくとも1種を含有することができる。易接着性層は、微粒子を層全体の質量に対して5質量%以上含有することが好ましい。 微粒子としては、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、酸化錫等の無機微粒子が好適に挙げられる。特にこの中でも、湿熱雰囲気に曝されたときの接着性の低下が小さい点で、酸化錫、シリカの微粒子が好ましい。 微粒子の粒径は、10〜700nm程度が好ましく、より好ましくは20〜300nm程度である。粒径が前記範囲の微粒子を用いることにより、良好な易接着性を得ることができる。微粒子の形状には特に制限はなく、球形、不定形、針状形等のものを用いることができる。 微粒子の易接着性層中における添加量としては、易接着性層中のバインダー当たり5〜400質量%が好ましく、より好ましくは50〜300質量%である。微粒子の添加量は、5質量%以上であると、湿熱雰囲気に曝されたときの接着性に優れており、1000質量%以下であると、易接着性層の面状がより良好である。(3)架橋剤 本発明における易接着性層は、架橋剤の少なくとも1種を含有することができる。 架橋剤の例としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。湿熱経時後の接着性を確保する観点から、これらの中でも特にオキサゾリン系架橋剤が好ましい。 前記オキサゾリン系架橋剤の具体例として、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン、2,2’−ビス−(2−オキサゾリン)、2,2’−メチレン−ビス−(2−オキサゾリン)、2,2’−エチレン−ビス−(2−オキサゾリン)、2,2’−トリメチレン−ビス−(2−オキサゾリン)、2,2’−テトラメチレン−ビス−(2−オキサゾリン)、2、2’−ヘキサメチレン−ビス−(2−オキサゾリン)、2,2’−オクタメチレン−ビス−(2−オキサゾリン)、2,2’−エチレン−ビス−(4,4’−ジメチル−2−オキサゾリン)、2,2’−p−フェニレン−ビス−(2−オキサゾリン)、2,2’−m−フェニレン−ビス−(2−オキサゾリン)、2,2’−m−フェニレン−ビス−(4,4’−ジメチル−2−オキサゾリン)、ビス−(2−オキサゾリニルシクロヘキサン)スルフィド、ビス−(2−オキサゾリニルノルボルナン)スルフィド等が挙げられる。さらに、これらの化合物の(共)重合体も好ましく利用することができる。 また、オキサゾリン基を有する化合物として、エポクロスK2010E、同K2020E、同K2030E、同WS500、同WS700(いずれも日本触媒化学工業(株)製)等も利用できる。 架橋剤の易接着性層中における好ましい添加量は、易接着性層のバインダー当たり5〜50質量%が好ましく、より好ましくは20〜40質量%である。架橋剤の添加量は、5質量%以上であることで良好な架橋効果が得られ、反射層の強度低下や接着不良が起こりにくく、50質量%以下であることで塗布液のポットライフをより長く保てる。(4)添加剤 本発明における易接着性層には、必要に応じて、更にポリスチレン、ポリメチルメタクリレート、シリカ等の公知のマット剤、アニオン系やノニオン系などの公知の界面活性剤などを添加してもよい。(5)易接着性層の形成方法 本発明における易接着性層の形成方法としては、易接着性を有するポリマーシートをポリエステルフィルムに貼合する方法や塗布による方法があるが、塗布による方法は、簡便でかつ均一性の高い薄膜での形成が可能である点で好ましい。塗布方法としては、例えば、グラビアコーターやバーコーターなどの公知の方法を利用することができる。塗布に用いる塗布液の溶媒としては、水でもよいし、トルエンやメチルエチルケトンのような有機溶媒でもよい。溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 また、易接着性層を塗布により形成する場合は、熱処理後の乾燥ゾーンにおいて塗布層の乾燥と熱処理を兼ねることが好ましい。なお、後述する着色層やその他の機能性層を塗布により形成する場合も同様である。(6)物性 本発明における易接着性層の厚みには特に制限はないが、通常は0.05〜8μmが好ましく、より好ましくは0.1〜5μmの範囲である。易接着性層の厚みは、0.05μm以上であることで必要とする易接着性が得られやすく、8μm以下であることで面状をより良好に維持することができる。 また、本発明における易接着性層は、ポリエステルフィルムとの間に着色層(特に反射層)が配置された場合の該着色層の効果を損なわない観点から、透明性を有していることが好ましい。−着色層− 本発明のポリエステルフィルムには、着色層を設けることができる。着色層は、ポリエステルフィルムの表面に接触させて、あるいは他の層を介して配置される層であり、顔料やバインダーを用いて構成することができる。 着色層の第一の機能は、入射光のうち太陽電池セルで発電に使われずにバックシートに到達した光を反射させて太陽電池セルに戻すことにより、太陽電池モジュールの発電効率を上げることにある。第二の機能は、太陽電池モジュールをオモテ面側から見た場合の外観の装飾性を向上することにある。一般に太陽電池モジュールをオモテ面側から見ると、太陽電池セルの周囲にバックシートが見えており、バックシートに着色層を設けることにより装飾性を向上させることができる。(1)顔料 本発明における着色層は、顔料の少なくとも1種を含有することができる。顔料は、2.5〜8.5g/m2の範囲で含有されるのが好ましい。より好ましい顔料含有量は、4.5〜7.5g/m2の範囲である。顔料の含有量が2.5g/m2以上であることで、必要な着色が得られやすく、光の反射率や装飾性をより優れたものに調整することができる。顔料の含有量が8.5g/m2以下であることで、着色層の面状をより良好に維持することができる。 顔料としては、例えば、酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、群青、紺青、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン等の有機顔料が挙げられる。これら顔料のうち、入射する太陽光を反射する反射層として着色層を構成する観点からは、白色顔料が好ましい。白色顔料としては、例えば、酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルクなどが好ましい。 顔料の平均粒径としては、0.03〜0.8μmが好ましく、より好ましくは0.15〜0.5μm程度が好ましい。平均粒径が前記範囲内であると、光の反射効率が低下する場合がある。 入射した太陽光を反射する反射層として着色層を構成する場合、顔料の反射層中における好ましい添加量は、用いる顔料の種類や平均粒径により変化するため一概には言えないが、1.5〜15g/m2が好ましく、より好ましくは3〜10g/m2程度である。添加量は、1.5g/m2以上であることで必要な反射率が得られやすく、15g/m2以下であることで反射層の強度をより一層高く維持することができる。(2)バインダー 本発明における着色層は、バインダーの少なくとも1種を含有することができる。バインダーを含む場合の量としては、前記顔料に対して、15〜200質量%の範囲が好ましく、17〜100質量%の範囲がより好ましい。バインダーの量は、15質量%以上であることで着色層の強度を一層良好に維持することができ、200質量%以下であることで反射率や装飾性が低下する。 着色層に好適なバインダーとしては、例えば、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィン等を用いることができる。バインダーは、耐久性の観点から、アクリル樹脂、ポリオレフィンが好ましい。また、アクリル樹脂として、アクリルとシリコーンとの複合樹脂も好ましい。好ましいバインダーの例として、以下のものが挙げられる。 前記ポリオレフィンの例としては、ケミパールS−120、同S−75N(ともに三井化学(株)製)などが挙げられる。前記アクリル樹脂の例としては、ジュリマーET−410、SEK−301(ともに日本純薬工業(株)製)などが挙げられる。前記アクリルとシリコーンとの複合樹脂の例としては、セラネートWSA1060、WSA1070(ともにDIC(株)製)、H7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)等を挙げることができる。(3)添加剤 本発明における着色層には、バインダー及び顔料以外に、必要に応じて、さらに架橋剤、界面活性剤、フィラー等を添加してもよい。 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。架橋剤の着色剤中における添加量は、着色層のバインダーあたり5〜50質量%が好ましく、より好ましくは10〜40質量%である。架橋剤の添加量は、5質量%以上であることで良好な架橋効果が得られ、着色層の強度や接着性を高く維持することができ、また50質量%以下であることで、塗布液のポットライフをより長く維持することができる。 界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を利用することができる。界面活性剤の添加量は、0.1〜15mg/m2が好ましく、より好ましくは0.5〜5mg/m2が好ましい。界面活性剤の添加量は、0.1mg/m2以上であることでハジキの発生が効果的に抑制され、また、15mg/m2以下であることで接着性に優れる。 さらに、着色層には、上記の顔料とは別に、シリカ等のフィラーなどを添加してもよい。フィラーの添加量は、着色層のバインダーあたり20質量%以下が好ましく、より好ましくは15質量%以下である。フィラーを含むことにより、着色層の強度を高めることができる。また、フィラーの添加量が20質量%以下であることで、顔料の比率が保てるため、良好な光反射性(反射率)や装飾性が得られる。(4)着色層の形成方法 着色層の形成方法としては、顔料を含有するポリマーシートをポリエステルフィルムに貼合する方法、ポリエステルフィルム成形時に着色層を共押出しする方法、塗布による方法等がある。このうち、塗布による方法は、簡便でかつ均一性の高い薄膜での形成が可能である点で好ましい。塗布方法としては、例えば、グラビアコーターやバーコーターなどの公知の方法を利用することができる。塗布に用いられる塗布液の溶媒としては、水でもよいし、トルエンやメチルエチルケトンのような有機溶媒でもよい。しかし、環境負荷の観点から、水を溶媒とすることが好ましい。 溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。(5)物性 着色層は、白色顔料を含有して白色層(光反射層)として構成されることが好ましい。反射層である場合の550nmの光反射率としては、75%以上であるのが好ましい。反射率が75%以上であると、太陽電池セルを素通りして発電に使用されなかった太陽光をセルに戻すことができ、発電効率を上げる効果が高い。 白色層(光反射層)の厚みは、1〜20μmが好ましく、1〜10μmがより好ましく、更に好ましくは1.5〜10μm程度である。膜厚が1μm以上である場合、必要な装飾性や反射率が得られやすく、20μm以下であると面状が悪化する場合がある。−下塗り層− 本発明のポリエステルフィルムには、下塗り層を設けることができる。下塗り層は、例えば、着色層が設けられるときには、着色層とポリエステルフィルムとの間に下塗り層を設けてもよい。下塗り層は、バインダー、架橋剤、界面活性剤等を用いて構成することができる。 下塗り層中に含有するバインダーとしては、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィン等が挙げられる。下塗り層には、バインダー以外にエポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤、アニオン系やノニオン系等の界面活性剤、シリカ等のフィラーなどを添加してもよい。 下塗り層を塗布形成するための方法や用いる塗布液の溶媒には、特に制限はない。 塗布方法としては、例えば、グラビアコーターやバーコーターを利用することができる。前記溶媒は、水でもよいし、トルエンやメチルエチルケトンのような有機溶媒でもよい。溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 塗布は、二軸延伸した後のポリエステルフィルムに塗布してもよいし、一軸延伸後のポリエステルフィルムに塗布してもよい。この場合、塗布後に初めの延伸と異なる方向に更に延伸してフィルムとしてもよい。さらに、延伸前のポリエステルフィルムに塗布した後に、2方向に延伸してもよい。 下塗り層の厚みは、0.05μm〜2μmが好ましく、より好ましくは0.1μm〜1.5μm程度の範囲が好ましい。膜厚が0.05μm以上であることで必要な接着性が得られやすく、2μm以下であることで、面状を良好に維持することができる。−防汚層(フッ素系樹脂層・ケイ素系樹脂層)− 本発明のポリエステルフィルムには、フッ素系樹脂層及びケイ素系(Si系)樹脂層の少なくとも一方を防汚層として設けることが好ましい。フッ素系樹脂層やSi系樹脂層を設けることで、ポリエステル表面の汚れ防止、耐候性向上が図れる。具体的には、特開2007−35694号公報、特開2008−28294号公報、WO2007/063698明細書に記載のフッ素樹脂系塗布層を有していることが好ましい。 また、テドラー(DuPont社製)等のフッ素系樹脂フィルムを張り合わせることも好ましい。 フッ素系樹脂層及びSi系樹脂層の厚みは、各々、1μm〜50μmの範囲が好ましく、より好ましくは1μm〜40μmの範囲が好ましく、更に好ましくは1μm〜10μmである。[太陽電池モジュール] 本発明の太陽電池モジュールは、本発明のポリエステルフィルムまたは本発明の太陽電池モジュール用バックシートを含むことを特徴とする。 本発明の太陽電池モジュールは、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する透明性の基板と既述の本発明のポリエステルフィルム(太陽電池用バックシート)との間に配置して構成されている。基板とポリエステルフィルムとの間は、例えばエチレン−酢酸ビニル共重合体等の樹脂(いわゆる封止材)で封止して構成することができる。 太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。 透明性の基板は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅−インジウム−ガリウム−セレン、銅−インジウム−セレン、カドミウム−テルル、ガリウム−砒素などのIII−V族やII−VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 カルボジイミド系の末端封止剤として、以下の化合物を各比較例に用いた。なお、比較例で用いた環状カルボジイミド(1)は特開2011−258641号公報の実施例に記載の分子量252の化合物であり、特開2011−258641号公報の参考例1に記載の合成方法を参考に合成した。 比較例で用いた環状カルボジイミド(2)は特開2011−258641号公報の実施例に記載の分子量516の化合物であり、特開2011−258641号公報の参考例2に記載の合成方法を参考に合成した。 比較例で用いた環状カルボジイミド(3)〜(5)はWO2010/071211号公報に記載の化合物であり、WO2010/071211号公報に記載の合成方法を参考に合成した。 以下の構造の本発明の一般式(O−1)または(O−2)で表される環状カルボジイミド化合物を末端封止剤として、各実施例に用いた。 上記のカルボジイミド系の末端封止剤のうち、各実施例で使用した化合物は以下の方法によって合成した。[合成例1](化合物1の合成) 攪拌装置を取り付けた反応装置に、カルバクロール(1.0mol)、酢酸1.6Lに攪拌しながら、硝酸(1.1mol)と酢酸800mlの混合液をゆっくり滴下した後、酢酸エチルを1Lで2回抽出し十分に水洗した。得られた有機層を硫酸マグネシウムで脱水した後、濃縮した。その後、カラムクロマトグラフィーにて精製し、カルバクロールのオルトニトロ体を50g得た。 次に上記で得られたニトロ体(0.1mol)と1,2−ジブロモエタン(0.05mol)、炭酸カリウム(0.3mol)、N,N−ジメチルホルムアミド200mlを攪拌装置および加熱装置を設置した反応装置にN2雰囲気下仕込み、130℃で12時間反応後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回分液を行った。有機層を硫酸マグネシウム5gで脱水し、ジクロロメタンを減圧により除去し、中間生成物A(ニトロ体)を得た。 次に中間生成物A(0.1mol)と5%パラジウムカーボン(Pd/C)(1g)、エタノール/ジクロロメタン(70/30)200mlを、攪拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなったら反応を終了した。Pd/Cを回収し、混合溶媒を除去すると中間生成物B(アミン体)が得られた。 次に攪拌装置および加熱装置を設置した反応装置に、N2雰囲気下、中間生成物B(0.025mol)とイミダゾール(0.2mol)、二硫化炭素(0.2mol)、アセトニトリル150mlを仕込んだ。この反応溶液の温度を80℃にし、15時間反応させる。得られたアセトニトリル溶液を濃縮後、カラムクロマトグラフィーで精製することで中間生成物C(チオウレア体)が得られた。 次に、攪拌装置を設置した反応装置に、中間生成物C(0.025mol)、30%NaOH(0.052mol)、塩化ベンジルトリエチルアンモニウム(0.0019mol)、クロロホルム170ml、メタノール5.8mlを仕込み攪拌した。10.5%次亜塩素酸水溶液(0.103mol)をゆっくり滴下し1時間攪拌した後、純水で3回分液した。 得られたクロロホルム溶液を硫酸マグネシウムで脱水し濃縮後、ヘキサン洗浄を2回行い、目的の化合物を得た。構造はNMR、IRで確認した。 1H−NMR(CDCl3) δ(ppm); 1.22(12H)、2.33(6H)、3.41(2H)、4.18(4H)、6.94(4H) 以上の反応により、化合物1を合成した。[合成例2](化合物2の合成) 合成例1で得たニトロ体(0.1mol)とペンタエリスリトールテトラブロミド(0.025mol)、炭酸カリウム(0.3mol)、N,N−ジメチルホルムアミド200mlを攪拌装置および加熱装置を設置した反応装置にN2雰囲気下仕込み、130℃で30時間反応後、DMFを減圧により除去し、得られた固形物を水、エタノール、ヘキサンで洗浄し、中間生成物A(ニトロ体)を得た。 次に中間生成物A(0.02mol)と2−イソプロパノール560mlと35%塩酸水溶液110mlを攪拌装置を設置した反応容器に仕込み、亜鉛粉末(0.8mol)をゆっくり加えた後、1時間還流した。濾過により亜鉛粉末を回収した後、クロロホルム1.0L加え、純水で2回分液した。有機層を硫酸マグネシウムで脱水し、クロロホルムを減圧により除去し、中間生成物B(アミン体)が得られた。 次に攪拌装置および加熱装置を設置した反応装置に、N2雰囲気下、中間生成物B(0.015mol)とイミダゾール(0.03mol)、二硫化炭素(0.09mol)、アセトニトリル50mlを仕込んだ。この反応溶液の温度を100℃にし、15時間反応させる。反応後析出した固体をろ過回収し、アセトニトリルで洗浄することで中間生成物C(チオウレア体)が得られた。 次に、攪拌装置を設置した反応装置に、中間生成物C(0.01mol)、30%NaOH(0.04mol)、塩化ベンジルトリエチルアンモニウム(0.002mol)、クロロホルム200ml、メタノール6.6mlを仕込み攪拌した。10.5%次亜塩素酸水溶液(0.08mol)をゆっくり滴下し1時間攪拌した後、純水で3回分液した。 得られたクロロホルム溶液を硫酸マグネシウムで脱水し濃縮後、ヘキサン洗浄を2回行い、目的の化合物を得た。構造はNMR、IRで確認した。 1H−NMR(CDCl3) δ(ppm); 1.22(24H)、2.20(12H)、3.42(4H)、4.42(8H)、6.94(8H) 以上の反応により、化合物2を合成した。[合成例3](化合物3の合成) 3−ヒドロキシビフェニル171g(1.0mol)をニトロメタン1700mlに溶解し、氷浴で2℃に冷却した後、攪拌しながら発煙硝酸を34ml滴下し、そのまま12時間攪拌した。200mlの水を加え、500mlのクロロホルムで反応性生物を抽出して塩酸水200ml、水100mlで洗浄した後、濃縮した。その後、カラムクロマトグラフィーにて生成し、2−ニトロ−3−ヒドロキシビフェニルを41g(0.3mol)得た。 次に上記で得られたニトロ体(0.1mol)と1,2−ジブロモエタン(0.05mol)、炭酸カリウム(0.3mol)、N,N−ジメチルホルムアミド200mlを攪拌装置および加熱装置を設置した反応装置にN2雰囲気下仕込み、130℃で12時間反応後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回分液を行った。有機層を硫酸マグネシウム5gで脱水し、ジクロロメタンを減圧により除去し、中間生成物A(ニトロ体)を得た。 次に中間生成物A(0.1mol)と5%パラジウムカーボン(Pd/C)(1g)、エタノール/ジクロロメタン(70/30)200mlを、攪拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなったら反応を終了した。Pd/Cを回収し、混合溶媒を除去すると中間生成物B(アミン体)が得られた。 次に攪拌装置および加熱装置を設置した反応装置に、N2雰囲気下、中間生成物B(0.025mol)とイミダゾール(0.2mol)、二硫化炭素(0.2mol)、アセトニトリル150mlを仕込んだ。この反応溶液の温度を80℃にし、15時間反応させる。得られたアセトニトリル溶液を濃縮後、カラムクロマトグラフィーで精製することで中間生成物C(チオウレア体)が得られた。 次に、攪拌装置を設置した反応装置に、中間生成物C(0.01mol)、30%NaOH(0.04mol)、塩化ベンジルトリエチルアンモニウム(0.002mol)、クロロホルム200ml、メタノール6.6mlを仕込み攪拌した。10.5%次亜塩素酸水溶液(0.08mol)をゆっくり滴下し1時間攪拌した後、純水で3回分液した。 得られたクロロホルム溶液を硫酸マグネシウムで脱水し濃縮後、ヘキサン洗浄を2回行い、目的の化合物を得た。構造はNMR、IRで確認した。 以上の反応により、化合物3を合成した。[合成例4](化合物4の合成) 合成例3で得たニトロ体(0.1mol)とペンタエリスリトールテトラブロミド(0.025mol)、炭酸カリウム(0.3mol)、N,N−ジメチルホルムアミド200mlを攪拌装置および加熱装置を設置した反応装置にN2雰囲気下仕込み、130℃で12時間反応後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回分液を行った。有機層を硫酸マグネシウム5gで脱水し、ジクロロメタンを減圧により除去し、中間生成物A(ニトロ体)を得た。 次に中間生成物A(0.02mol)と5%パラジウムカーボン(Pd/C)(1g)、エタノール/ジクロロメタン(70/30)200mlを、攪拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなったら反応を終了した。Pd/Cを回収し、混合溶媒を除去すると中間生成物B(アミン体)が得られた。 次に攪拌装置および加熱装置を設置した反応装置に、N2雰囲気下、中間生成物B(0.015mol)とイミダゾール(0.2mol)、二硫化炭素(0.2mol)、アセトニトリル150mlを仕込んだ。この反応溶液の温度を100℃にし、15時間反応させる。反応後析出した固体をろ過回収し、洗浄することで中間生成物C(チオウレア体)が得られた。 次に、攪拌装置を設置した反応装置に、中間生成物C(0.01mol)、30%NaOH(0.04mol)、塩化ベンジルトリエチルアンモニウム(0.002mol)、クロロホルム200ml、メタノール6.6mlを仕込み攪拌した。10.5%次亜塩素酸水溶液(0.08mol)をゆっくり滴下し1時間攪拌した後、純水で3回分液した。 得られたクロロホルム溶液を硫酸マグネシウムで脱水し濃縮後、ヘキサン洗浄を2回行い、目的の化合物を得た。構造はNMR、IRで確認した。 以上の反応により、化合物4を合成した。[実施例1]1.飽和ポリエステル樹脂の作製−工程(A)− 高純度テレフタル酸4.7トンとエチレングリコール1.8トンとを90分間かけて混合してスラリーを形成し、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。次いで、クエン酸がTi金属に配位したクエン酸キレートチタン錯体(「VERTEC AC−420」、ジョンソン・マッセイ社製)のエチレングリコール溶液を連続的に第一エステル化反応槽に供給し、反応槽内温度250℃として攪拌しながら平均滞留時間約4.4時間で反応を行なってオリゴマーを得た。この際、クエン酸キレートチタン錯体は、Ti添加量が元素換算値で9ppmとなるように連続的に添加した。得られたオリゴマーの酸価は500eq/トンであった。 得られたオリゴマーを第二エステル化反応槽に移送し、反応槽内温度250℃・平均滞留時間1.2時間で攪拌して反応させ、酸価が180eq/トンのオリゴマーを得た。第二エステル化反応槽は内部が第1ゾーン〜第3ゾーンまでの3つのゾーンに仕切られており、第2ゾーンから酢酸マグネシウムのエチレングリコール溶液を、Mg添加量が元素換算値で75ppmになるように連続的に供給し、続いて第3ゾーンから、リン酸トリメチルのエチレングリコール溶液を、P添加量が元素換算値で65ppmになるように連続的に供給した。なお、リン酸トリメチルのエチレングリコール溶液は、25℃のエチレングリコール液に、25℃のリン酸トリメチル液を加え、25℃で2時間攪拌することにより調製した(溶液中のリン化合物含有量:3.8質量%)。 以上により、エステル化反応生成物を得た。−工程(B)− 工程(A)で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給した。次いで、反応温度270℃・反応槽内圧力20torr(2.67×10-3MPa)でエステル化反応生成物を攪拌しながら、平均滞留時間約1.8時間で重縮合(エステル交換反応)させた。 次いで、得られた反応物を、第一重縮合反応槽から第二重縮合反応槽に移送した。その後、反応物を第二重縮合反応槽反応槽において、反応槽内温度276℃・反応槽内圧力5torr(6.67×10-4MPa)で攪拌し、滞留時間約1.2時間の条件で反応(エステル交換反応)させた。 次いで、エステル交換反応によって得られた反応物を、第二重縮合反応槽から、更に第三重縮合反応槽に移送し、この反応槽では、反応槽内温度276℃、反応槽内圧力1.5torr(2.0×10-4MPa)で攪拌しながら、滞留時間1.5時間の条件で反応(エステル交換反応)させ、カルボン酸価:22eq/ton、IV(固有粘度):0.65dl/gの反応物(ポリエチレンテレフタレート(PET))を得た。 更に、回転型真空重合装置を用いて、50Paの減圧下で、得られたPETに205℃で24時間加熱処理(固相重合)を行った。なお、固相重合時間を長くすることでIVは増加しAVは減少し易く、固相重合温度を上げることでAVは増加しIVは低下し易い。 その後、真空重合装置内に、25℃の窒素ガスを流し、ペレットを25℃まで、冷却し、カルボン酸価15eq/トン、IVが0.78dl/gのPETを得た。2.ポリエステルフィルムの作製と評価−押出成形(合成工程・フィルム形成工程)− 得られた上述のPETを直径50mmの2軸混練押出し機のホッパーに主フィーダーで投入し、副フィーダーに本発明の化合物1を投入し、280℃で溶融して押出した。押出した溶融体(メルト)をギアポンプ及び濾過器(孔径20μm)を通した後、ダイから20℃の冷却ロールに押出し、非晶性シートを得た。なお、押出されたメルトは、静電印加法を用い冷却ロールに密着させた。−延伸(二軸延伸工程)− 冷却ロール上に押出し、固化した未延伸フィルムに対し、以下の方法で逐次2軸延伸を施し、厚み175μmのポリエステルフィルムを得た。<延伸方法>(a)縦延伸 未延伸フィルムを周速の異なる2対のニップロールの間に通し、縦方向(搬送方向)に延伸した。なお、予熱温度を90℃、延伸温度を90℃、延伸倍率を3.5倍、延伸速度を3000%/秒として実施した。(b)横延伸 縦延伸した前記フィルムに対し、テンターを用いて下記条件にて横延伸した。 <条件>・予熱温度:100℃・延伸温度:110℃・延伸倍率:4.2倍・延伸速度:70%/秒−熱固定・熱緩和− 続いて、縦延伸及び横延伸を終えた後の延伸フィルムを下記条件で熱固定した。さらに、熱固定した後、テンター幅を縮め下記条件で熱緩和した。<熱固定条件> ・熱固定温度:198℃ ・熱固定時間:2秒<熱緩和条件> ・熱緩和温度:195℃ ・熱緩和率:5%−巻き取り− 熱固定及び熱緩和の後、ポリエステルフィルムの両端を10cmずつトリミングした。その後、両端に幅10mmで押出し加工(ナーリング)を行なった後、張力25kg/mで巻き取った。なお、幅は1.5m、巻長は2000mであった。 以上のようにして、実施例1のポリエステルフィルムを作製した。得られたサンプルフィルムはブツや皺などなく面状も良好であった。−プロセス評価−(増粘) フィルムのIVを官能評価し、下記の基準にしたがって増粘を評価した。得られた結果を下記表1に記載した。〈基準〉○:IV(押出し後)−IV’(押出し前)≦1.0dl/g。×:1.0dl/g<IV(押出し後)−IV’(押出し前)。(ガス) 2軸押し出し機のダイから発生する煙、臭いを官能評価し、下記の基準にしたがって揮発性を評価した。得られた結果を下記表1に記載した。〈基準〉○:煙・臭いの発生はなかった。△:煙の発生はなかったが、臭いが発生した。×:煙・臭いが発生した。−ポリエステルフィルムの性能−(耐湿熱性(PCT試験)) 耐加水分解性の評価は破断伸度保持率半減期で評価した。破断伸度保持率半減期は、実施例1にて得られたポリエステルフィルムに対して、120℃、相対湿度100%の条件で保存処理(加熱処理)を行い、保存後のポリエステルフィルムが示す破断伸度(%)が、保存前のポリエステルフィルムが示す破断伸度(%)に対して50%となる保存時間を測定することで評価した。得られた結果を下記表1に記載した。○:破断伸度半減期が160時間以上△:破断伸度半減期が130時間以上60時間未満×:破断伸度半減期が130時間未満 破断伸度保持率半減期が長い程、ポリエステルフィルムの耐加水分解性が優れていることを示す。すなわち、本発明のポリエステルフィルムは、120℃、相対湿度100%の条件で保存処理した前後の破断伸度半減期が130時間以上であることが好ましく、160時間以上であることがより好ましい。(揮散成分) 得られたポリエステルフィルムに対して、下記の基準にしたがってフィルム中の揮散成分の量をガスクロマトグラフィ(商品名P&T−GC/MS、日本分光(株)社製)により測定し、以下の基準で評価した。得られた結果を下記表1に記載した。〈条件〉 280℃で10分加熱し、発生したガスを検出した。〈基準〉○:カルボジイミド由来の化合物は検出限界以下。△:カルボジイミド由来のイソシアネート化合物は検出限界以下。×:カルボジイミド由来のイソシアネート化合物が検出された。(膜厚均一性) 4時間連続して製膜した際のポリエステルフィルムの膜厚変動を評価した。得られた結果を下記表1に記載した。◎:膜厚変動が5%以内○:膜厚変動が5%より大きく、10%以内△:膜厚変動が10%より大きく、15%以内×:膜厚変動が15%より大きい3.太陽電池モジュール用バックシートの作製 実施例1で作製したポリエステルフィルムを用いて、太陽電池モジュール用バックシートを作製した。 まず、実施例1で作製したポリエステルフィルムの片面に、下記の(i)反射層と(ii)易接着性層をこの順で塗設した。(i)反射層(着色層) 下記組成の諸成分を混合し、ダイノミル型分散機により1時間分散処理して顔料分散物を調製した。<顔料分散物の処方>・二酸化チタン ・・・39.9部 (タイペークR−780−2、石原産業(株)製、固形分100質量%)・ポリビニルアルコール ・・・8.0部 (PVA−105、(株)クラレ製、固形分10%)・界面活性剤(デモールEP、花王(株)製、固形分:25%) ・・・0.5部・蒸留水 ・・・51.6部 次いで、得られた顔料分散物を用い、下記組成の諸成分を混合することにより反射層形成用塗布液を調製した。<反射層形成用塗布液の処方>・前記の顔料分散物 ・・・71.4部・ポリアクリル樹脂水分散液 ・・・17.1部 (バインダー:ジュリマーET410、日本純薬工業(株)製、固形分:30質量%)・ポリオキシアルキレンアルキルエーテル ・・・2.7部 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)・オキサゾリン化合物(架橋剤) ・・・1.8部 (エポクロスWS−700、日本触媒(株)製、固形分:25質量%)・蒸留水 ・・・7.0部 前記より得られた反射層形成用塗布液を実施例1のポリエステルフィルムにバーコーターによって塗布し、180℃で1分間乾燥して、二酸化チタン塗布量が6.5g/m2の(i)反射層(白色層)を形成した。(ii)易接着性層 下記組成の諸成分を混合して易接着性層用塗布液を調製し、これをバインダー塗布量が0.09g/m2になるように(i)反射層の上に塗布した。その後、180℃で1分間乾燥させ、(ii)易接着性層を形成した。<易接着性層用塗布液の組成>・ポリオレフィン樹脂水分散液 ・・・5.2部 (カルボン酸含有バインダー:ケミパールS75N、三井化学(株)製、固形分:24質量%)・ポリオキシアルキレンアルキルエーテル ・・・7.8部 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)・オキサゾリン化合物 ・・・0.8部 (エポクロスWS−700、日本触媒(株)製、固形分25質量%)・シリカ微粒子水分散物 ・・・2.9部 (アエロジルOX−50、日本アエロジル(株)製、固形分:10質量%)・蒸留水 ・・・83.3部 次に、ポリエステルフィルムの(i)反射層及び(ii)易接着性層が形成されている側と反対側の面に、下記の(iii)下塗り層、(iv)バリア層、及び(v)防汚層をポリエステルフィルム側から順次、塗設した。(iii)下塗り層 下記組成の諸成分を混合して下塗り層用塗布液を調製し、この塗布液をポリエステルフィルムに塗布し、180℃で1分間乾燥させ、下塗り層(乾燥塗設量:約0.1g/m2)を形成した。<下塗り層用塗布液の組成>・ポリエステル樹脂 ・・・1.7部 (バイロナールMD−1200、東洋紡(株)製、固形分:17質量%)・ポリエステル樹脂 ・・・3.8部 (スルホン酸含有バインダー:ペスレジンA−520、高松油脂(株)製、固形分:30質量%)・ポリオキシアルキレンアルキルエーテル ・・・1.5部 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)・カルボジイミド化合物 ・・・1.3部 (カルボジライトV−02−L2、日清紡(株)製、固形分:10質量%)・蒸留水 ・・・91.7部(iv)バリア層 続いて、形成された下塗り層の表面に下記の蒸着条件にて厚み800Åの酸化珪素の蒸着膜を形成し、バリア層とした。<蒸着条件> ・反応ガス混合比(単位:slm):ヘキサメチルジシロキサン/酸素ガス/ヘリウム=1/10/10 ・真空チャンバー内の真空度:5.0×10-6mbar ・蒸着チャンバー内の真空度:6.0×10-2mbar ・冷却・電極ドラム供給電力:20kW ・フィルムの搬送速度 :80m/分(v)防汚層 以下に示すように、第1及び第2防汚層を形成するための塗布液を調製し、前記バリア層の上に第1防汚層用塗布液、第2防汚層用塗布液の順に塗布し、2層構造の防汚層を塗設した。<第1防汚層>−第1防汚層用塗布液の調製− 下記組成中の成分を混合し、第1防汚層用塗布液を調製した。 <塗布液の組成>・セラネートWSA1070(DIC(株)製) ・・・45.9部・オキサゾリン化合物(架橋剤) ・・・7.7部 (エポクロスWS−700、日本触媒(株)製、固形分:25質量%)・ポリオキシアルキレンアルキルエーテル ・・・2.0部 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)・反射層で用いた顔料分散物 ・・・33.0部・蒸留水 ・・・11.4部−第1防汚層の形成− 得られた塗布液を、バインダー塗布量が3.0g/m2になるように、バリア層の上に塗布し、180℃で1分間乾燥させて第1防汚層を形成した。−第2防汚層用塗布液の調製− 下記組成中の成分を混合し、第2防汚層用塗布液を調製した。<塗布液の組成>・フッ素系バインダー:オブリガード(AGCコーテック(株)製) ・・・45.9部・オキサゾリン化合物 ・・・7.7部 (エポクロスWS−700、日本触媒(株)製、固形分:25質量%;架橋剤)・ポリオキシアルキレンアルキルエーテル ・・・2.0部 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)・前記反射層用に調製した前記顔料分散物 ・・・33.0部・蒸留水 ・・・11.4部−第2防汚層の形成− 調製した第2防汚層用塗布液を、バインダー塗布量が2.0g/m2になるように、バリア層上に形成された第1防汚層の上に塗布し、180℃で1分間乾燥させて第2防汚層を形成した。 以上のようにして、ポリエステルフィルムの一方の側に反射層及び易接着層を有し、他方の側に下塗り層、バリア層、及び防汚層を有する実施例1の太陽電池モジュール用バックシートを作製した。[実施例2〜8、比較例1〜10] 下記表1に記載の材料を用いた以外は実施例1と同様にして、各実施例および比較例のポリエステルフィルムを製造した。 得られた各実施例および比較例のポリエステルフィルムを用いた以外は実施例1と同様にして、各実施例および比較例の太陽電池モジュール用バックシートを作製した。 各実施例および比較例において、実施例1と同様の評価を行った結果を下記表1に記載した。 上記表1より、各実施例で用いた本発明の一般式(O−1)または(O−2)で表される環状カルボジイミド化合物1〜4を用いると製膜時の増粘を抑制でき、イソシアネートガスの発生を抑制でき、得られた各実施例のポリエステルフィルムは、耐加水分解性に優れ、フィルム中の分子量の小さいイソシアネートの含有がなく、増粘なく、膜厚均一性が良好であった。 なお、本発明は以下の効果を奏することに限定されるものでもないが、各実施例のポリエステルフィルムは耐湿熱性も良好であった。 一方、環状ではない構造のモノカルボジイミドやポリカルボジイミドを用いた比較例1〜3のポリエステルフィルムは、製膜時にイソシアネートが発生し、フィルム中に揮散成分が含まれていた。 アリーレン基のオルト位に特定の官能基を有さない単環の環状カルボジイミド(1)を少量用いた比較例4のポリエステルフィルムは、製膜時の増粘が大きく、製膜安定性に劣るものであった。 アリーレン基のオルト位に特定の官能基をオルト位に有さない単環の環状カルボジイミド(1)を用いた比較例5のポリエステルフィルムは、製膜時の増粘が生じ、フィルムの膜厚均一性に劣るものであった。 アリーレン基のオルト位に特定の官能基を有さない2環の環状カルボジイミド(2)を用いた比較例6および7のポリエステルフィルムは、製膜時の増粘が生じ、フィルムの膜厚均一性に劣るものであった。 アリーレン基のオルト位に特定の官能基をメタ位に有する環の環状カルボジイミド(3)を用いた比較例8のポリエステルフィルムは、製膜時の増粘が大きく、製膜安定性に劣るものであった。 アリーレン基のオルト位に特定の官能基をメタ位に有する環の環状カルボジイミド(4)を用いた比較例9のポリエステルフィルムは、製膜時の増粘が大きく、製膜安定性に劣るものであった。 アリーレン基のオルト位に特定の官能基をメタ位に有する環の環状カルボジイミド(5)を用いた比較例10のポリエステルフィルムは、製膜時の増粘が大きく、製膜安定性に劣るものであった。[太陽電池の作製] 前記のようにして作製した各実施例の太陽電池モジュール用バックシートを用い、特開2009−158952号公報の図1に示す構造になるように透明充填剤に貼り合わせ、太陽電池モジュールを作製した。このとき、各実施例の太陽電池モジュール用バックシートの易接着性層が、太陽電池素子を包埋する透明充填剤に接するように貼り付けた。 作製した太陽電池モジュールは、長期にわたって、安定して発電できることが確認された。 下記一般式(O−1)または一般式(O−2)で表されることを特徴とする環状カルボジイミド化合物。(一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R1〜R8は互いに結合して環を形成してもよい。X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L1は2価の連結基を表す。)(一般式(O−2)中、R11、R15、R21およびR25は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R12〜R14、R16〜R18、R22〜R24およびR26〜R28は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R11〜R28は互いに結合して環を形成してもよい。X11、X12、X21およびX22は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L2は4価の連結基を表す。) 前記一般式(O−1)中、R2およびR6がともに水素原子であることを特徴とする請求項1に記載の環状カルボジイミド化合物。 前記一般式(O−1)および(O−2)中、R1およびR5、ならびに、R11、R15、R21およびR25がそれぞれ独立に2級もしくは3級アルキル基、または、アリール基を表すことを特徴とする請求項1または2に記載の環状カルボジイミド化合物。 下記一般式(O−1)または一般式(O−2)で表される環状カルボジイミド化合物と、ポリエステルを含むことを特徴とするポリエステルフィルム。(一般式(O−1)中、R1およびR5は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R2〜R4およびR6〜R8は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R1〜R8は互いに結合して環を形成してもよい。X1およびX2は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L1は2価の連結基を表す。)(一般式(O−2)中、R11、R15、R21およびR25は、それぞれ独立にアルキル基、アリール基またはアルコキシ基を表す。R12〜R14、R16〜R18、R22〜R24およびR26〜R28は、それぞれ独立に水素原子、アルキル基、アリール基またはアルコキシ基を表す。R11〜R28は互いに結合して環を形成してもよい。X11、X12、X21およびX22は、それぞれ独立に単結合、−O−、−CO−、−S−、−SO2−、−NH−または−CH2−を表す。L2は4価の連結基を表す。) 前記一般式(O−1)中、R2およびR6がともに水素原子であることを特徴とする請求項4に記載のポリエステルフィルム。 前記一般式(O−1)および(O−2)中、R1およびR5、ならびに、R11、R15、R21およびR25がそれぞれ独立に2級もしくは3級アルキル基、または、アリール基を表すことを特徴とする請求項4または5に記載のポリエステルフィルム。 前記ポリエステルに対して、前記環状カルボジイミド化合物を0.05〜5質量%含むことを特徴とする請求項4〜6のいずれか一項に記載のポリエステルフィルム。 前記ポリエステルのカルボン酸由来の成分が、芳香族二塩基酸又はそのエステル形成性誘導体由来の成分であることを特徴とする請求項4〜7のいずれか一項に記載のポリエステルフィルム。 2軸配向されたことを特徴とする請求項4〜8のいずれか一項に記載のポリエステルフィルム。 請求項4〜9のいずれか一項に記載のポリエステルフィルムを用いたことを特徴とする太陽電池モジュール用バックシート。 請求項10に記載の太陽電池モジュール用バックシートを用いた太陽電池モジュール。 【課題】分子量の小さいイソシアネートを含有しない、増粘なく膜厚均一性が良好なポリエステルフィルムの製造に用いることができ、製膜時に増粘を抑制でき、イソシアネートガス発生を抑制できる環状カルボジイミド化合物の提供。【解決手段】式(O−1)又は式(O−2)で表される環状カルボジイミド化合物。【選択図】なし


ページのトップへ戻る

生命科学データベース横断検索へ戻る