生命科学関連特許情報

タイトル:特許公報(B2)_アルカリ度測定方法
出願番号:2003054339
年次:2008
IPC分類:G01N 21/80,G01N 31/22


特許情報キャッシュ

紀本 英志 岡村 慶 渡邉 修一 JP 4081390 特許公報(B2) 20080215 2003054339 20030228 アルカリ度測定方法 紀本電子工業株式会社 591081321 岡村 慶 503081760 西教 圭一郎 100075557 紀本 英志 岡村 慶 渡邉 修一 20080423 G01N 21/80 20060101AFI20080403BHJP G01N 31/22 20060101ALI20080403BHJP JPG01N21/80G01N31/22 123 G01N21/75-21/83 特開平10−332671(JP,A) H.Kimoto 外5名,“A High Time−Resolution Analyzer for Total Alkalinity of Seawater,Based on Continuous Potentiometric Mesurement”,ANALYTICAL SCIENCES,Vol.17,Supplement,2001年,PP.i415−i418 W.Yao,R.H.Byrne,”Simplified seawater alkalinity analysis:Use of linear array spectrometers”,Deep Sea Research PartI:Oceanographic Research Papers,Vol.45,Issue8,1990年8月,PP.1383−1392 2 2004264139 20040924 12 20030228 2005021734 20051110 村田 尚英 秋田 将行 黒田 浩一 【0001】【発明の属する技術分野】本発明は、被検水中のアルカリ度を測定するアルカリ度測定方法に関する。【0002】【従来の技術】アルカリ度とは、たとえば海水に溶解している強塩基(Na+,K+,Ca+,Sr+など)の和は、強酸根(Cl−,SO42−,Br−,F−など)の和よりもわずかに多く、この強塩基と強酸根との差を海水1kgあたりのモル容量で表した量を言う。簡易的には、前述の海水などの被検水に酸を加えて中和するのに要する酸の当量数である。このアルカリ度は、上水の飲料品質評価の一指標であり、また温室効果によって地球温暖化に大きな影響を及ぼすとされる二酸化炭素(CO2)のグローバルな循環を探査する指標としても重要である。【0003】陸水や海水などの被検水中のアルカリ度を測定する方法には、一定量の予め定める濃度の酸を、一度に被検水に添加混合し、混合液のpHをpH電極によって測定するという一点法がある(たとえば、非特許文献1)。しかしながら、一点法は、装置が複雑化するので自動化が難しく、また一検体のアルカリ度測定に長時間を要するという問題がある。【0004】このような一点法における問題を解決する従来技術の一つに、流れ(フロー)分析法を用いて自動化したアルカリ度測定装置がある(非特許文献2参照)。図8は、従来技術のアルカリ度測定装置1の構成を簡略化して示す系統図である。図8に示すフロー法を用いた従来のアルカリ度測定装置1では、以下のようにアルカリ度の測定が行なわれる。【0005】海水中に浸漬された水中ポンプP1によって、被検水である海水が汲上げられる。汲上げられた海水は、バルブVaを介してフィルタ2に送液される。フィルタに送液される海水は、バルブVaからフィルタ2に至る間において、脱気ポンプP2と脱気処理装置3とによって気体成分が脱気される。脱気後、フィルタ2でろ過された海水は、供給ポンプP3によって定量ポンプP4へと供液される。定量ポンプP4は、一定量の海水を連続して混合器であるミキシングコイル4へと送液する。【0006】ミキシングコイル4へ送液される過程において、海水には、定量ポンプP5によって一定量の予め定める濃度の塩酸(HCl)が加えられる。このとき、海水と塩酸との混合比率が予め定める一定の値になるように、定量ポンプP4,P5の送液量が設定されている。海水と塩酸との混合液は、第1フローセル5に供給され、第1フローセル5に設けられる第1pH電極6によってpHが測定され、このpH値から海水のアルカリ度が求められる。【0007】供給ポンプP3と定量ポンプP4との間で分岐された流路の海水は、第2フローセル7へ供給され、第2フローセル7に設けられる第2pH電極8によって、塩酸の混合されていない海水のpHが測定される。第1および第2フローセル5,7においてpH測定に供された海水は、測定後第1および第2ドレン9,10から排水される。なおバルブV1およびバルブV2は、アルカリ度の既知である標準液をそれぞれ供給するために設けられ、キャリブレーションを行なう場合、バルブVaを遮断して海水の供給を停止し、前記V1またはV2のいずれかから標準液を供給する。【0008】図8に示すフロー分析法を用いる従来のアルカリ度測定装置1では、被検水のアルカリ度を自動測定することが可能であり、また連続測定が可能なのでアルカリ度の経時変化や分布のデータを求めることができる。【0009】しかしながら、従来のアルカリ度測定装置1では、測定精度と測定における応答性とを考慮すると、測定に用いられるpH電極の所定の表面に被検水を接触させなければならないので、1回あたりの測定に被検水を多量に、たとえば10ミリリットル(mL)程度供給しなければならないという問題がある。少量の被検水によって測定可能なpH電極の使用が試みられているけれども、精度および測定の応答性が良くないという問題がある。またpH電極は、ドリフトなどがあるので、装置の維持管理が難しいという問題がある。【0010】【非特許文献1】西村雅吉編、「海洋化学」第3刷、産業図書(株)、1989年6月12日、p.265−267【非特許文献2】Hideshi KIMOTO et al.、「A High Time-Resolution Analyzer for Total Alkalinity of Seawater, Based on Continuous Potentiometric Measurement」、ANALYTICAL SCIENCE 2001、The Japan Society for Analytical Chemistry、2001、Vol.17、p.1415−1418、(Accepted on September 13,2001)【0011】【発明が解決しようとする課題】本発明の目的は、少量の被検水で精度および応答性良くアルカリ度を自動測定することのできるアルカリ度測定方法を提供することである。【0012】【課題を解決するための手段】 本発明は、被検水中のアルカリ度を測定するアルカリ度測定方法において、 定量ポンプによって予め定める量の被検水を送液し、 酸にpH指示薬を予め加え、 被検水の送液量と予め定める濃度に調整された酸の送液量とが所望の比率になるように前記pH指示薬の予め加えられた酸を送液して被検水に混合し、 前記被検水、酸およびpH指示薬を含む混合液に溶存する二酸化炭素を連続的に脱気処理し、 脱気処理後の被検水、酸およびpH指示薬を含む混合液を比色分析することによって、アルカリ度を流れ分析法によって測定することを特徴とするアルカリ度測定方法である。【0013】 本発明に従えば、定量ポンプによって送液される被検水と、同じく定量ポンプによって送液される予め定める濃度に調整された酸とを、所望の比率になるように混合し、前記酸にpH指示薬を予め加えておき、被検水、酸およびpH指示薬を含む混合液を比色分析することによって、アルカリ度を流れ(フロー)分析法によって測定する。このように、定量ポンプを用いて一定量の被検水と酸とを送液することによって、アルカリ度測定の自動化が実現され、また比色分析を用いてpH値を測定することによって、少量の被検水であっても、精度および応答性良くアルカリ度を測定することが可能になる。 また、被検水、酸およびpH指示薬を含む混合液を連続的に脱気処理することによって、混合液に溶存する主に二酸化炭素(CO2)ガスが脱気され、CO2ガスが被検水に溶解することによるpH値に対する影響を防止することができるので、アルカリ度の測定精度を一層向上することができる。【0016】 また本発明は、前記被検水は、 予め定める量を計量するために設けられる2つのサンプルループであって、前記定量ポンプから被検水の送液される順位の定められたサンプルループに送液され、 前記順位に従って、前記pH指示薬の予め加えられた酸が混合されて比色分析されることを特徴とする。【0017】 本発明に従えば、定量ポンプから被検水の送液される順位の定められた2つのサンプルループが準備され、被検水は、前記順位に従って、pH指示薬の予め加えられた酸が混合されて比色分析される。各サンプルループに送液される被検水を、前記順位に従って繰返しアルカリ度測定することによって、一被検水と次の順位にある被検水との測定時間間隔を短縮することができるので、一層精度の高い経時変化データを得ることが可能になり、また一層密度の高い分布データを得ることが可能になる。【0018】【発明の実施の形態】 図1は、本発明の前提となるアルカリ度測定方法に用いられるアルカリ度測定装置20の構成を簡略化して示す系統図である。アルカリ度測定装置20は、アルカリ度の測定されるべき被検水の供給源である被検水供給源21(図中ではサンプルと表記する)と、被検水に混合されるべき酸の供給源である酸供給源22と、予め定める量の被検水を送液する被検水送液手段である第1定量ポンプ25と、被検水の送液量と予め定める濃度に調整された酸の送液量とが所望の比率になるように被検水に酸を混合するべく酸を送液する酸送液手段である第2定量ポンプ26と、被検水と酸との混合液にpH指示薬を加える指示薬添加手段27と、被検水と酸とを充分に混合するためのミキシングコイル28と、pH指示薬の加えられた混合液を比色分析する比色分析手段29とを含む。このアルカリ度測定装置20は、フロー分析法の中でもフロースルー法を利用した装置であり、被検水中のアルカリ度測定に用いられる。【0019】なおアルカリ度測定装置20には、アルカリ度が既知でありキャリブレーションに用いられる標準液を装置に供給する標準液供給源23と、被検水供給源21から比色分析手段29に至る流路と、標準液供給源23から比色分析手段29に至る流路とを切換える切換弁24とが、さらに含まれる。【0020】 被検水供給源21は、被検水を蓄える水槽であっても良く、またたとえば海洋航行する船舶から被検水である海水中に浸漬される水中ポンプであっても良い。酸供給源22は、たとえば濃度0.01Nの塩酸(HCl)を貯留する槽である。なおpH指示薬添加手段27は、本実施の形態では、予め定める量のpH指示薬をHClに混合し、酸供給源22中にHClとともに貯留する構成である。このpH指示薬には、たとえばブロモフェノールブルー(商品名:和光純薬株式会社製)など公知のものを使用することができる。【0021】第1および第2定量ポンプ25,26は、高い精度で一定量の被検水およびHClを送液することのできるポンプであり、たとえばシリンジポンプによって実現される。ミキシングコイル28は、たとえばポリテトラフルオロエチレン製の管を螺旋状に形成したものであり、螺旋状に形成されることによって内部を流過する液体を充分に混合することができる。【0022】比色分析手段29は、吸光光度分析(光吸収分析)計29である。吸光光度分析計29は、光源31と、吸光度セル32と、検出器33と、光源から出射される光を吸光度セル32に導き、吸光度セル32を透過した光を検出器33に導く光ファイバ34とを含む。光源31は、たとえばタングステンランプ、キセノンランプ、発光ダイオード(略称LED)などを備える光の出射源である。吸光度セル32は、たとえば透明ガラス管によって構成される管路32aを備え、この管路32aには、前述の被検水とpH指示薬の添加されたHClとの混合液が流過し、流過している混合液に光源31から出射され光ファイバ34によって導かれた光を透過させる。検出器33は、たとえばフォトダイオードなどによって構成され、光ファイバ34から入射される光を電気信号に変換する。pH指示薬は、被検水とHClとの混合液のpHに応じて色が変化し、前述の管路32a中の混合液を透過した光の強度は、pH指示薬の発現する色に応じて減衰する。検出器33は、光ファイバ34を通じて入射する光強度に対応した電気信号を出力するので、その出力の強弱に基づいて被検水のpH値、すなわちアルカリ度を求めることができる。【0023】以下アルカリ度測定装置20における被検水のアルカリ度測定方法について説明する。まず被検水(サンプル)である海水を測定に供するべく、切換弁24を被検水供給源21側流路に切換えて、第1定量ポンプ25によって3mL/minの海水を送液する。一方第2定量ポンプ26によって、酸供給源22から0.7mL/minの予めpH指示薬の加えられた濃度0.01NのHClを送液する。このpH指示薬の添加されたHClは、第1定量ポンプ25とミキシングコイル28との間の管路35に接続される管路36を通じて海水に混合され、海水とHClおよびpH指示薬とは、さらにミキシングコイル28を流過することによって充分に混合される。ここで、海水の送液量とHClの送液量との比率すなわち混合比率Ra{=3(mL/min)/0.7(mL/min)}は、4.28に設定されている。【0024】ミキシングコイル28を流過した海水とHClおよびpH指示薬との混合液は、吸光光度分析計29の吸光度セル32に設けられる管路32aに送液され、前述のようにして吸光光度分析され、アルカリ度が測定される。測定後の混合液は、管路37を通じて排水される。なお、キャリブレーションを行なう場合、切換弁24を標準液供給源23側流路に切換えて、前述の海水のアルカリ度測定と同一の動作を行う。【0025】アルカリ度測定装置20を用いる測定に要する前記混合液の量は、約1mL程度であり、pH電極を用いた測定における所要量10mLに比較して、少量で測定可能である。またアルカリ度測定装置20は、被検水を含む混合液に光が吸収されることによる光強度の減衰を検出して測定するので、迅速に測定可能すなわち応答性に優れ、かつ高い測定精度を実現できる。またpH電極による測定のように測定プローブが被検水に接触することによって測定するのではなく、前述のように光強度の減衰を検出するという非接触測定であるので、再現性にも優れる。【0026】 図2は、本発明の実施に用いられるアルカリ度測定装置40の構成を簡略化して示す系統図である。アルカリ度測定装置40は、前述のアルカリ度測定装置20に類似し、対応する部分については、同一の参照符号を付して説明を省略する。アルカリ度測定装置40において注目すべきは、ミキシングコイル28と吸光度セル32との間に、被検水とpH指示薬の加えられた酸との混合液を連続的に脱気処理する脱気手段41をさらに備えることである。【0027】被検水には、炭酸(H2CO3)の含まれていることがあり、このH2CO3は、pHを3〜4に調整した状態ではほとんど解離していないので、アルカリ度測定に係るpH値に対する影響の程度は小さいけれども、混合液からCO2ガスを連続的に脱気することによって、CO2ガスが被検水に溶解することによるpH値に対する影響を防止することができるので、アルカリ度の測定精度を一層向上することができる。【0028】 図3は、本発明の実施に用いられる他のアルカリ度測定装置45の構成を簡略化して示す系統図である。アルカリ度測定装置45は、前述のアルカリ度測定装置40に類似し、対応する部分については、同一の参照符号を付して説明を省略する。【0029】このアルカリ度測定装置45は、フロー分析法の中でもフローインジェクション法を利用する装置である。アルカリ度測定装置45は、被検水供給源21から第1定量ポンプ25によって送液される被検水を計量する計量手段であるサンプルループ46と、サンプルループ46内の被検水を吸光光度分析計29に向けて押出し供給するためのキャリアを貯留するキャリア供給源47と、キャリア供給源47から一定量のキャリアを送液する第3定量ポンプ48と、サンプルループ46への被検水の送液とキャリアによるサンプルループ46中の被検水の押出し動作とを切換える6方弁49とを、さらに含むことを特徴とする。【0030】キャリアには、たとえば純水が用いられる。キャリア供給源47は、キャリアを貯留する槽である。第3定量ポンプ48は、第1および第2定量ポンプ25,26と同様シリンジポンプなどによって実現される。サンプルループ46は、たとえばポリテトラフルオロエチレン製の管であり、その内径と長さとによって、管内部に収納される被検水の量が所望の値になるように設定する。【0031】6方弁49は、6つのポートP1〜P6を有し、ポート間を接続する流路の開閉を交互に切換える流路切換弁である。図3中「実線」で接続されるポートP6とP1、ポートP2とP3、ポートP4とP5とを結ぶ流路が、開かれている状態をロードと呼ぶ。逆に図3中「破線」で接続されるポートP1とP2、ポートP3とP4、ポートP5とP6とを結ぶ流路が、開かれている状態をインジェクションと呼ぶ。【0032】以下アルカリ度測定装置45における被検水のアルカリ度測定方法について説明する。まず前述のロードの状態では、切換弁24が被検水供給源21側流路に切換えられ、第1定量ポンプ25によって被検水が送液される。第1定量ポンプ25による被検水の送液管路50は、6方弁49のポートP3に接続され、被検水はポートP3からポートP2を経てサンプルループ46内へ送液される。被検水は、サンプルループ46内を充填し、サンプルループ46の収納量を超えるものは、6方弁49のポートP5からポートP4を経て排水される。キャリアは、第3定量ポンプ48によってキャリア供給源47から送液される。第3定量ポンプ48によるキャリアの送液管路51は、6方弁49のポートP1に接続され、キャリアは、ポートP1からポートP6を経て前述の管路35に送液される。管路35には管路36が接続されるので、酸供給源22から第2定量ポンプ26によって送液されるpH指示薬の添加された酸が、被検水に混合される。被検水とpH指示薬の添加された酸との混合液は、ミキシングコイル28でさらに混合され、脱気手段41によって連続的に脱気処理された後、吸光光度分析計29へ送られる。すなわちロードの状態では、キャリアのアルカリ度が測定されている。【0033】一方6方弁49の流路が切換えられたインジェクションの状態では、第1定量ポンプ25によって送液される被検水は、6方弁49のポートP3からポートP4を経て直接排水される。第3定量ポンプ48によって送液されるキャリアは、6方弁49のポートP1からポートP2を経てサンプルループ46へ送液され、サンプルループ46内の被検水を押出す。キャリアに押出された被検水は、ポートP5からポートP6を経て管路35に送液される。前述のように管路35には管路36が接続されるので、酸供給源22から第2定量ポンプ26によって送液されるpH指示薬の添加された酸が、被検水に混合される。被検水とpH指示薬の添加された酸との混合液は、ミキシングコイル28でさらに混合され、脱気手段41によって連続的に脱気処理された後、吸光光度分析計29へ送られるので、被検水のアルカリ度測定が行なわれる。【0034】このようにアルカリ度測定装置45では、キャリアのアルカリ度測定と、被検水のアルカリ度測定とが、交互に行なわれる。図4は、アルカリ度測定装置45による測定結果を例示する模式図である。図4のヒストグラムに示すように、アルカリ度測定装置45では、キャリアである純水の測定と、被検水の測定とを交互に繰返すので、被検水の測定結果は間欠的に得られる。【0035】図5は、本発明の実施に用いられるさらに他のアルカリ度測定装置55の構成を簡略化して示す系統図である。アルカリ度測定装置55は、前述のアルカリ度測定装置45に類似し、対応する部分については同一の参照符号を付して説明を省略する。【0036】アルカリ度測定装置55は、被検水を計量する計量手段であるサンプルループを2つ、すなわち第1および第2サンプルループ56,57を備え、第1および第2サンプルループ56,57への被検水の送液とキャリアによるサンプルループ中の被検水の押出し動作とを切換える切換弁には、8つのポートP1〜P8を有する8方弁58を備えることを特徴とする。【0037】以下アルカリ度測定装置55における被検水のアルカリ度測定方法について説明する。まず第1のロード状態では、第1定量ポンプ25によって送液される被検水は、送液管路50を通じて8方弁58のポートP8に送液され、さらにポートP8からポートP1を経て第1サンプルループ56内へ送液される。被検水は、第1サンプルループ56内を充填し、第1サンプルループ56の収納量を超えるものは、8方弁58のポートP5からポートP4を経て排水される。このとき、第3定量ポンプ48によって送液されるキャリアは、送液管路51を通じて8方弁58のポートP2に送液され、次いでポートP2からポートP3を経て第2サンプルループ57内を充填し、さらにポートP7からポートP6を経て管路35に送液される。管路35には管路36が接続されるので、酸供給源22から第2定量ポンプ26によって送液されるpH指示薬の添加された酸が、被検水に混合される。被検水とpH指示薬の添加された酸との混合液は、ミキシングコイル28でさらに混合され、脱気手段41によって連続的に脱気された後、比色分析手段29へ送られる。すなわち測定開始時における第1のロード状態では、キャリアのアルカリ度が測定されている。【0038】一方8方弁58の流路が切換えられた第1のインジェクション状態では、第1定量ポンプ25によって送液される被検水は、8方弁58のポートP8からポートP7を経て第2サンプルループ57内へ送液され、第2サンプルループ57内のキャリアを押出してポートP4から排水するとともに、第2サンプルループ57内を充填する。このとき第3定量ポンプ48によって送液されるキャリアは、ポートP2からポートP1を経て第1サンプルループ56へ送液され、第1サンプルループ56内の被検水を押出す。キャリアに押出された被検水は、ポートP5からポートP6を経て管路35に送液される。管路35に送液された被検水は、前述と同様にしてアルカリ度が測定される。【0039】次に8方弁58が切換えられた第2のロード状態では、第1定量ポンプ25によって送液される被検水は、8方弁58のポートP8からポートP1を経て第1サンプルループ56内へ送液され、第1サンプルループ56内のキャリアを押出してポートP4から排水するとともに、第1サンプルループ56内を充填する。このとき第3定量ポンプ48によって送液されるキャリアは、8方弁58のポートP2からポートP3を経て第2サンプルループ57へ送液され、第2サンプルループ57内の被検水を押出す。キャリアに押出された被検水は、ポートP7からポートP6を経て管路35に送液される。管路35に送液された被検水は、前述と同様にしてアルカリ度が測定される。【0040】さらに8方弁58が切換えられた第2のインジェクション状態では、第1定量ポンプ25によって送液される被検水は、8方弁58のポートP8からポートP7を経て第2サンプルループ57内へ送液され、第2サンプルループ57内のキャリアを押出してポートP4から排水するとともに、第2サンプルループ57内を充填する。このとき第3定量ポンプ48によって送液されるキャリアは、ポートP2からポートP1を経て第1サンプルループ56へ送液され、第1サンプルループ56内の被検水を押出す。キャリアに押出された被検水は、ポートP5からポートP6を経て管路35に送液される。管路35に送液された被検水は、前述と同様にしてアルカリ度が測定される。【0041】このように第1サンプルループ56内の被検水をキャリアで押出して測定するとき、第2サンプルループ57にあるキャリアを被検水によって排水するとともに、第2サンプルループ57内に被検水を充填する。逆に第2サンプルループ57内の被検水をキャリアで押出して測定するとき、第1サンプルループ56にあるキャリアを被検水によって排水するとともに、第1サンプルループ56内に被検水を充填する。したがって、測定開始時以外は、キャリアの測定をすることなく、第1サンプルループ56に送液された被検水と、第2サンプルループ57に送液された被検水とを、交互に連続して測定することが可能になる。【0042】図6は、アルカリ度測定装置55による測定結果を例示する模式図である。図6のヒストグラムに示すように、アルカリ度測定装置55では、測定開始時以外は、第1サンプルループ56の被検水の測定と、第2サンプルループ57の被検水の測定とを交互に繰返すので、被検水の測定結果は連続的に得られる。すなわち、計量手段であるサンプルループを複数設け、複数設けられるサンプルループに順位付けをして被検水を送液し、順位に従って繰返しアルカリ度を測定することによって、一被検水と次の順位にある被検水との測定時間間隔を短縮することができるので、一層精度の高い経時変化データ、また一層密度の高い分布データを得ることが可能になる。【0043】(実施例)以下本発明の実施例を説明する。【0044】アルカリ度測定装置40に相当する測定装置GAMOS−V(紀本電子工業株式会社製)を準備し、人工海水を被検水としてそのアルカリ度を測定した。アルカリ度測定に用いた他の条件を表1に示す。【0045】【表1】【0046】図7は、人工海水のアルカリ度測定データを示す図である。図7では、横軸に測定時刻、縦軸にアルカリ度をとり、人工海水のアルカリ度測定データをライン60で示す。1分間あたり1.5mLという少量の海水を供給するだけで、図7に示すように、応答性良く高い精度でほぼ連続的にアルカリ度を測定することが可能であった。【0047】【発明の効果】 本発明によれば、定量ポンプによって送液される被検水と、同じく定量ポンプによって送液される予め定める濃度に調整された酸とを、所望の比率になるように混合し、前記酸にpH指示薬を予め加えておき、被検水、酸およびpH指示薬を含む混合液を比色分析することによって、アルカリ度をフロー分析法によって測定する。このように、定量ポンプを用いて一定量の被検水と酸とを送液することによって、アルカリ度測定の自動化が実現され、また比色分析を用いてpH値を測定することによって、少量の被検水であっても、精度および応答性良くアルカリ度を測定することが可能になる。 また、被検水、酸およびpH指示薬を含む混合液を連続的に脱気処理することによって、混合液に溶存する主にCO2ガスが脱気され、CO2ガスが被検水に溶解することによるpH値に対する影響を防止することができるので、アルカリ度の測定精度を一層向上することができる。【0049】 また本発明によれば、定量ポンプから被検水の送液される順位の定められた2つのサンプルループが準備され、被検水は、前記順位に従って、pH指示薬の予め加えられた酸が混合されて比色分析される。各サンプルループに送液される被検水を、前記順位に従って繰返しアルカリ度測定することによって、一被検水と次の順位にある被検水との測定時間間隔を短縮することができるので、一層精度の高い経時変化データを得ることが可能になり、また一層密度の高い分布データを得ることが可能になる。【図面の簡単な説明】【図1】 本発明の前提となるアルカリ度測定方法に用いられるアルカリ度測定装置20の構成を簡略化して示す系統図である。【図2】 本発明の実施に用いられるアルカリ度測定装置40の構成を簡略化して示す系統図である。【図3】 本発明の実施に用いられる他のアルカリ度測定装置45の構成を簡略化して示す系統図である。【図4】 アルカリ度測定装置45による測定結果を例示する模式図である。【図5】 本発明の実施に用いられるさらに他のアルカリ度測定装置55の構成を簡略化して示す系統図である。【図6】 アルカリ度測定装置55による測定結果を例示する模式図である。【図7】 人工海水のアルカリ度測定データを示す図である。【図8】 従来技術のアルカリ度測定装置1の構成を簡略化して示す系統図である。 被検水中のアルカリ度を測定するアルカリ度測定方法において、 定量ポンプによって予め定める量の被検水を送液し、 酸にpH指示薬を予め加え、 被検水の送液量と予め定める濃度に調整された酸の送液量とが所望の比率になるように前記pH指示薬の予め加えられた酸を送液して被検水に混合し、 前記被検水、酸およびpH指示薬を含む混合液に溶存する二酸化炭素を連続的に脱気処理し、 脱気処理後の被検水、酸およびpH指示薬を含む混合液を比色分析することによって、アルカリ度を流れ分析法によって測定することを特徴とするアルカリ度測定方法。 前記被検水は、 予め定める量を計量するために設けられる2つのサンプルループであって、前記定量ポンプから被検水の送液される順位の定められたサンプルループに送液され、 前記順位に従って、前記pH指示薬の予め加えられた酸が混合されて比色分析されることを特徴とする請求項1記載のアルカリ度測定方法。


ページのトップへ戻る

生命科学データベース横断検索へ戻る