タイトル: | 特許公報(B2)_免疫学的分析方法 |
出願番号: | 2002549967 |
年次: | 2007 |
IPC分類: | G01N 33/543 |
中原 邦彦 澤井 時男 JP 3899029 特許公報(B2) 20070105 2002549967 20011211 免疫学的分析方法 株式会社三菱化学ヤトロン 000138277 森田 憲一 100090251 山口 健次郎 100139594 中原 邦彦 澤井 時男 JP 2000376221 20001211 20070328 G01N 33/543 20060101AFI20070308BHJP JPG01N33/543 581WG01N33/543 581GG01N33/543 581U G01N 33/543 特表平09−506172(JP,A) 3 JP2001010855 20011211 WO2002048711 20020620 10 20040816 宮澤 浩 【0001】《技術分野》 本発明は、免疫学的分析方法に関する。より詳細には、免疫反応を利用した凝集反応による分析方法に関する。なお、本明細書における前記「分析」には、分析対象物質の量を定量的又は半定量的に決定する「測定」と、分析対象物の存在の有無を判定する「検出」との両方が含まれる。【0002】《背景技術》 生体液中の微量成分を定量的に分析する方法のひとつとして、分析対象物質に対する抗体又は抗原を利用する免疫学的測定方法が多用されている。その免疫学的測定手段としては、抗原抗体反応により形成される免疫複合体を光学的に測定する免疫比ろう法及び免疫比濁法や、放射性物質や酵素を標識体として利用するラジオイムノアッセイやエンザイムノアッセイが用いられてきた。また、近年、多数の被検試料を短時間に処理するための自動分析装置が普及し、更に高感度化が要求されることと相まって、特に、抗体(又は抗原)を結合したラテックス粒子との反応を利用するラテックス凝集法が汎用されている。いわゆるラテックス凝集法とは、分析対象物質と、ラテックス粒子に結合した抗体(又は抗原)との反応により生じるラテックス粒子の凝集の程度を検出することにより、分析対象物質を測定する方法である。この凝集の程度を検出する方法としては、目視的に観察するか、あるいは反応液に光を照射して散乱光あるいは透過光を測定する方法がある。光学的な分析方法は試料中の抗原又は抗体の定量に用いられている。【0003】 しかし、上記のようなラテックス凝集法を実施するには、分析対象物質に対する抗体(又は抗原)をラテックス粒子に担持させることが必須である。その方法としては、例えば、抗体(又は抗原)とラテックス粒子とを混合して結合させる物理吸着法、あるいは抗体(又は抗原)とラテックス粒子とを共有結合させる化学結合法がある。これらの操作はいずれも煩雑であり、ラテックス凝集法の問題点の1つである。また、ラテックス凝集法の大きな問題点は、上記のようにラテックス粒子に抗体(又は抗原)を担持させると、ラテックス粒子自体の溶液中での分散性を維持する電気二重層のバランスが崩れてしまうので、抗原抗体反応とは関係なく、ラテックス粒子が自己凝集してしまうという点がある。このことにより、測定の正確性が失われるだけでなく、ラテックス粒子自体の保存安定性が不安定となるため、経時的な感度上昇や感度低下がみられることがある。【0004】 更に、分析対象物質に対する抗体(又は抗原)をラテックス粒子に担持させる際に、抗体(又は抗原)がラテックス粒子表面へ吸着することによってタンパク質としての抗体(又は抗原)が変性してしまうことがある。このような変性が起きると、分析対象物質に対する抗体(又は抗原)の反応性に変化が生じ、目的とする免疫学的反応が発現しないか、あるいは目的以外の反応が生じるので、いずれの場合も測定結果の信頼性を著しく低下させてしまう。【0005】 従来法では、上記問題点を解消するために、例えば、ラテックス粒子の成分や製造法を改良することにより、抗体(又は抗原)を容易に担持することができ、自己凝集を抑制する手段に関する種々の検討が行われてきた。しかしながら、このアプローチは、ラテックス粒子の製造業者や供給業者には有益であっても、ラテックス粒子の供給を受ける者にとっては参加する余地がない。そこで、抗体(又は抗原)を担持させた後のラテックス粒子の保存液中に、界面活性剤や多糖類からなる安定化剤を共存させる等の工夫が行われきたが、上記問題点を一挙に解決するには至っていないのが実情である。 本発明者は、ラテックス凝集反応における上記の問題点を克服するために鋭意研究を重ねた結果、分析対象物質に対する抗体(又は抗原)をラテックス粒子に直接には担持させずに、ラテックス粒子を凝集させ、その凝集の程度を分析することができる方法を開発した。 本発明はこうした知見に基づくものである。【0006】《発明の開示》 本発明では、(1)分析対象物質に対する抗原又は抗体にビオチンを結合した結合体を含む組成物(以下、第1組成物と称することがある)と、(2)アビジンを結合した微粒子を含む組成物(以下、第2組成物と称することがある)とを使用することができる。 本発明の好ましい態様によれば、前記第1組成物に含まれる結合体が、抗原又は抗体に1分子のビオチンを結合した結合体である。 本発明の別の好ましい態様によれば、前記第2組成物に含まれるアビジン結合微粒子が、アビジンを結合したラテックス粒子である。【0007】 本発明は、(1)分析対象物質を含有する可能性の有る被検試料と、分析対象物質に対する抗原又は抗体にビオチンを結合した結合体(但し、抗原又は抗体に結合するビオチン量が、分析対象物質が存在しない状況下、前記アビジン結合微粒子とは実質的に凝集しない量であるものとする)とを最初に接触させ、続いて、アビジンを結合した微粒子と接触させる工程:及び(2)分析対象物質と結合体との間で形成される免疫複合体、及びアビジン結合微粒子から生じる凝集の程度を検出することにより分析対象物質を分析する工程を含む、免疫学的分析方法に関する。 本発明の免疫学的分析方法の好ましい態様によれば、結合体が、抗原又は抗体に1分子のビオチンを結合した結合体である。 本発明の免疫学的分析方法の更に別の好ましい態様によれば、アビジン結合微粒子が、アビジンを結合したラテックス粒子である。【0008】《発明を実施するための最良の形態》 本発明で用いる第1組成物に含有させる結合体は、分析対象物質に対する抗原又は抗体に特定量のビオチンを結合した結合体である。本発明では、前記結合体として、分析対象物質が存在しない状況下、前記アビジン結合微粒子とは実質的に凝集しない量のビオチン(好ましくは、ビオチン1分子)を、前記抗原又は抗体に結合した結合体を使用する。 例えば、前記結合体として、分析対象物質に対する抗原又は抗体にビオチン2分子を結合した結合体を調製し、この結合体と、アビジン結合微粒子とを共存させると、分析対象物質が存在しなくても、アビジンとビオチンとが特異的に結合可能であるため、アビジン結合微粒子と結合体とアビジン結合粒子とがこの順に連結した複合体が形成され、自己凝集が発生する。【0009】 本明細書において、「分析対象物質が存在しない状況下、アビジン結合微粒子とは実質的に凝集しない量」のビオチンとは、分析対象物質に対する抗原又は抗体にビオチンを結合した結合体と、アビジン結合微粒子とを、分析対象物質の不在下で共存させた場合に、実質的に自己凝集が発生しない量のビオチンを意味する。なお、「実質的に凝集しない」とは、この方法の実施にあたり、分析結果に影響を与えないことを意味する。 先に述べたように、抗原又は抗体にビオチン2分子を結合した結合体では、前記条件下で自己凝集が発生する。従って、本発明で用いる結合体では、抗原又は抗体に結合させるビオチン量は、2分子を越えることはなく、好ましくは1分子である。【0010】 本発明で用いる結合体は、公知の方法により調製することができ、例えば、ビオチン化試薬を用いることにより、抗原又は抗体にビオチン1分子又はそれ以上(好ましくは1分子)を化学的に結合させるか、あるいは抗原又は抗体にビオチン1分子又はそれ以上(好ましくは1分子)を物理的に吸着させ、続いてビオチン分子と結合又は吸着していない残存ビオチンを取り除く処理を行った後、緩衝液で最適濃度に希釈することによって得ることができる。得られた結合体を、分析対象物質の不在下で、アビジン結合微粒子と共存させ、実質的に自己凝集が発生するか否かを分析することにより、抗原又は抗原に結合させたビオチン量が、「分析対象物質が存在しない状況下、アビジン結合微粒子とは実質的に凝集しない量」であるか否かを判定することができる。 前記希釈液をそのまま、又は適当な添加剤(例えば、周知の安定化剤)を加えて、第1組成物として用いることができる。あるいは、前記の希釈液をそのまま、又は適当な添加剤(例えば、周知の安定化剤)を加えてから凍結乾燥して、粉末状の第1組成物とすることもできる。前記安定化剤としては、例えば、無機塩(例えば、塩化ナトリウム又はアジ化ナトリウム)、タンパク質(例えば、ウシ血清アルブミン)、又は塩化コリン等を挙げることができる。【0011】 前記結合体において、ビオチンと結合させる抗原又は抗体は、それぞれ分析対象物質と抗原抗体反応を起こす抗原又は抗体であれば特に限定されず、抗体(モノクローナル抗体及びポリクローナル抗体の両方を含む)としては、免疫グロブリン分子それ自体、あるいは抗体フラグメント[例えば、Fab、Fab’、F(ab’)2、又はFv]を用いることができる。なお、モノクローナル抗体をビオチンと結合させる場合には、分析対象物質である抗原に対して異なる部位で結合する2種類以上のモノクローナル抗体を用いる場合と抗原の認識部位が2つ以上存在するときは1種類のモノクローナル抗体を用いる場合がある。【0012】 本発明で用いる第2組成物に含有させるアビジン結合微粒子は、無機物又は有機物の微粒子に多数のアビジン分子を結合させて調製した微粒子である。微粒子としては、有機高分子微粒子、例えば、ポリスチレン、スチレン−メタクリル酸共重合体、スチレン−グリシジル(メタ)アクリレート共重合体、又はスチレン−スチレンスルホン酸塩共重合体などのラテックス等の微粒子であるラテックス粒子を使用することができる。 前記微粒子の平均粒径も、特に限定されるものではないが、0.01〜1.0μmであることが好ましく、特にラテックス粒子の場合には、分析対象物質の検出濃度や使用する測定機器によって0.05〜1.0μm(好ましくは0.05〜0.5μm)の範囲で適宜選択することができる。【0013】 アビジンとしては、ビオチンに特異的に強く結合することのできる任意のアビジン、例えば、卵白アビジン、ストレプトアビジン、又は遺伝子操作で得られたアビジン(すなわち、リコンビナントアビジン)等を用いることができる。【0014】 前記のアビジン結合微粒子を調製する方法としては、例えば、微粒子(例えば、ラテックス粒子)にペプチド合成試薬(例えば、水溶性カルボジミド)を添加した後にアビジンを加えて撹拌し、遠心分離してから水中に分散させる方法を用いることができる。こうして得られたアビジン結合微粒子(特には、アビジン結合ラテックス粒子)の分散性が保たれる緩衝液で希釈することができ、この希釈液をそのまま、又は適当な添加剤(例えば、周知の安定化剤)を加えて、第2組成物として用いることができる。あるいは、前記の希釈液をそのまま、又は適当な添加剤(例えば、周知の安定化剤)を加えてから凍結乾燥して、粉末状の第2組成物とすることもできる。【0015】 アビジン結合微粒子(特には、アビジン結合ラテックス粒子)の分散性を保つことのできる緩衝液は、通常の緩衝液〔例えば、10mmol/L燐酸緩衝液(pH7.0)〕に分散剤(例えば、TWEEN20など)を添加して調製することができる。第2組成物用の前記安定化剤としては、第1組成物で列挙した安定化剤を用いることができる。【0016】 前記の方法で調整した第1組成物及び第2組成物を、例えば、前記結合体を含有する液状又は粉末状第1試薬と、前記アビジン結合微粒子を含有する液状又は粉末状第2試薬との2試薬系とすることができる。なお、粉末状組成物は、使用前に適当な緩衝液によって液状化してから使用する。【0017】 本発明の免疫学的分析方法では、(イ)分析対象物質を含有する可能性の有る被検試料と、(ロ)分析対象物質に対する抗原又は抗体にビオチンを結合した結合体[但し、抗原又は抗体に結合するビオチン量が、分析対象物質が存在しない状況下、前記アビジン結合微粒子とは実質的に凝集しない量(好ましくは1分子)であるものとする]と、(ハ)アビジン結合微粒子とを接触させ、分析対象物質と結合体との間で形成される免疫複合体、及びアビジン結合微粒子から生じる凝集の程度を検出することにより、被検試料中の分析対象物質を分析することができる。前記の免疫学的分析試薬は、本発明によるこの免疫学的分析方法を実施するのに適した試薬である。【0018】 前記の被検試料(イ)と結合体(ロ)とアビジン結合微粒子(ハ)との接触は同時に行うこともできるし、あるいは、前記の被検試料(イ)と結合体(ロ)とを最初に接触させ、続いて、アビジン結合微粒子(ハ)を接触させることもできる。被検試料中に分析対象物質が含まれている場合には、前記の被検試料(イ)と結合体(ロ)との接触により、抗原抗体反応が起きて免疫複合体が形成され、もう一方で、結合体(ロ)とアビジン結合微粒子(ハ)との接触により、ビオチン−アビジン反応によって、ビオチン−アビジン複合体が形成される。例えば、前記の被検試料(イ)と結合体(ロ)との接触により、抗原抗体反応が起きて免疫複合体が形成され、続いて、その免疫複合体のビオチンと、アビジン結合微粒子のアビジンとがビオチン−アビジン反応によって結合する。前記の免疫複合体を形成した分析対象物質は、別の結合体(ロ)との接触により、もう一方の免疫複合体を形成し、その免疫複合体が更にアビジン結合微粒子とも結合するので、凝集が発生する。更に、前記のアビジン結合微粒子においても、多数のアビジン分子が存在し、それらのアビジンが、前記と同様のビオチン−アビジン反応及び抗原抗体反応を起こすので、この点からも凝集が進行する。【0019】 凝集の程度を検出する方法としては、従来公知のスライド凝集法やマイクロプレート凝集法を利用することができ、ラテックス粒子の凝集の程度を光学的に検出する場合には、例えば、散乱光強度、吸光度又は透過光強度を測定する従来公知の光学機器を用いることができ、好ましい測定波長は300〜800nmである。凝集の程度を検出する方法は、公知の方法に従い、用いるラテックス粒子の大きさ、ラテックス濃度の選択、抗原抗体反応の反応時間、ビオチン−アビジン反応の反応時間などの設定により、散乱光強度、吸光度又は透過光強度の増加若しくは減少を測定するか、あるいはこれらを組合せることにより行うことができる。【0020】 本発明の免疫学的分析方法において、抗原抗体反応の反応系に存在させる抗体又は抗原の濃度、結合体に含まれるビオチンの量、あるいはアビジン結合微粒子の量は、被検試料の種類や分析対象物質の種類によって適宜変更することができる。例えば、血清(被検試料)中のIgG(分析対象物質)濃度は50mg/mLまでの測定範囲が必要となるので、その測定範囲に応じて使用量を設定し、あるいはエラスターゼ1(分析対象物質)などは測定範囲は50ng/mLまでなので、その測定範囲に応じて使用量を設定する。【0021】 本発明の免疫学的分析方法において、被検試料と、ビオチンを結合した結合体とを接触させることによる抗原抗体反応の条件は、通常の免疫学的分析方法における条件と同様である。本発明の免疫学的分析方法においては、前記の抗原抗体反応を実施する系と同じ系内で、ビオチン結合体とアビジン結合微粒子とを接触させることによるビオチン−アビジン反応を実施するので、ビオチン−アビジン反応に適した条件にする必要がある。【0022】 抗原抗体反応及びビオチン−アビジン反応の反応媒体としては、分析対象物質の種類に応じて適切な各種緩衝液を選択することができる。この緩衝液は、分析対象物質を失活させることがなく、しかも抗原抗体反応及びビオチン−アビジン反応を阻害しないようなイオン濃度やpHを有するものであればよい。例えば、グッド緩衝液、グリシン緩衝液、又はトリス緩衝液を使用することができる。抗原抗体反応及びビオチン−アビジン反応のpHは、好ましくは5〜10、より好ましくは6〜8である。反応温度は、好ましくは0〜50℃、より好ましくは20〜40℃である。反応時間は適宜選択することができる。【0023】 本発明による分析方法の対象となる被検試料は、分析対象物質である抗原又は抗体を含む可能性のある試料である限り、特に限定されるものではなく、例えば、臨床診断に一般的に用いられる生体由来液、例えば、血液、血清、血漿、又は尿、あるいは実験サンプルなどを挙げることができる。【0024】 本発明による分析方法の分析対象物質も、一般に抗原抗体反応を利用して分析することのできる物質(特に生理活性物質)であれば特に限定されない。分析対象物質の代表例としては、タンパク質や脂質等を挙げることができ、より詳しくは、例えば、各種抗原、抗体、レセプター、又は酵素等を挙げることができる。具体的には、C反応性タンパク質(CRP)、リウマチ因子、フェリチン、β−2マイクログロブリン、α−フェトプロティン(AFP)、抗ストレプトリジンO抗体、IgE、梅毒トレポネーマ抗体、梅毒脂質抗原に対する抗体、B型肝炎ウィルス(HBS抗体、HBS抗原、HBc抗体、HBe抗体)Dダイマー、フィブリン・フィブリノゲン分解産物(FDP)、可溶性フィブリン(Soluble fibrin:SF)、プラスミン・α2−プラスミンインヒビター複合体(PPI)、前立腺特異抗原(PSA)、エラスターゼ1、エラスターゼXDP、トロンボモジュリン、抗DNA抗体等を挙げることができる。【0025】《実施例》 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。【0026】《実施例1:可溶性フィブリンの測定》(1)可溶性フィブリン抗体結合ビオチン溶液の調製 可溶性フィブリン(SF)に対するモノクローナル抗体として、WO95/12617号公報に記載のハイブリドーマFM No.43−1から分泌されるモノクローナル抗体FM No.43−1を使用した。前記ハイブリドーマは、独立行政法人産業技術総合研究所特許生物寄託センター[(旧)工業技術院生命工学工業技術研究所(あて名:〒305−8566 日本国茨城県つくば市東1丁目1番地1 中央第6)]に1993年10月27日から国内寄託され、1994年10月27日から国際寄託に移管されている。国際寄託番号(国際寄託番号に続く[]内は国内寄託番号)は、FERM BP−4846[FERM P−13925]である。 具体的には、前記WO95/12617号公報の実施例2(b)に記載の方法と同様の方法により、可溶性フィブリン(SF)に対するモノクローナル抗体腹水を調製し、硫酸アンモニウムによって粗精製した後、イオン交換樹脂(DEAE)で処理し、更にペプシン消化によって得られたF(ab’)2に2−メルカプトエチルアミンを加え、Fab’抗体フラグメントを作製した。こうして得られた抗体を2.5mg/mLの濃度で50mmol/Lリン酸緩衝液(pH7.1)に溶解した液に、マレイミドビオチン(フナコシ社製)0.6mgを添加し、室温にて一昼夜感作した。次いで、G25スーパーファインでゲル濾過を行うことにより、Fab’抗体とビオチンとの結合体を回収し、その結合体を、0.1mol/Lリン酸緩衝液(pH6.5)に0.05mg/mLの量で添加し、SF抗体結合ビオチン溶液とした。【0027】(2)アビジンラテックス懸濁液の調製 10%化学結合ラテックス0.1mL(粒径:0.3μm)に最終濃度が2.5mg/mLになるように水溶性カルボジミド(Water−soluble carbodimide;WSC)を添加し、10分間静置した後、ストレプトアビジン0.8mg/mLを添加し、1時間攪拌した。この混合物を遠心し、得られた沈殿に蒸留水0.5mLを加えて攪拌し、2%アビジンラテックス分散液を得た。この分散液を10mmol/L−MOPS懸濁液(pH7.0)で希釈して0.5%アビジンラテックス懸濁液とした。【0028】(3)SF抗原分析用試薬 本実施例のヒトSF抗原分析用試薬は、前項(1)のSF抗体結合ビオチン溶液からなる第1試薬と、前項(2)のアビジンラテックス懸濁液からなる第2試薬とから構成される2液系の試薬である。【0029】(4)標準SF抗原液 市販のフィブリノゲン(XIII因子フリー:カビ社製)にトロンビンを作用させ、得られたクロットを酢酸で可溶化し、血漿に添加してSF抗原を作製した。この抗原を0μg/mL、10μg/mL、20μg/mL、40μg/mL、60μg/mL、又は80μg/mL濃度で含むヒト血漿を使用した。【0030】(5)分析方法 前項(4)の標準SF抗原液3μLに、前項(1)のSF抗体結合ビオチン溶液130μLを混合し、37℃で5分間保持した後、前項(2)のアビジンラテックス懸濁液130μLを添加して攪拌し、この添加から10分間経過後までの波長600nmでの吸光度を測定した。この10分間の吸光度の変化量を吸光度変化量(ΔAbs)とする。測定は自動分析装置LPIA−S500を用いて行った。結果を図1に示す。【0031】《比較例1》(1)抗体のラテックスへの物理的吸着 実施例1(1)で調製した抗SFモノクローナル抗体のF(ab’)2フラグメントを0.5mg/mLの濃度で10mmol/L−Tris−HCl緩衝液(pH8.0)に溶解して調製した抗体液5mLに、平均粒径0.3μmのポリスチレンラテックス[固形分=5%(w/v);日本合成ゴム社]5mLを添加して、室温にて30分間攪拌した。 前記混合物に、0.3%(w/v)ウシ血清アルブミン(BSA)を含有する100mmol/L−Tris−HCl緩衝液(pH8.0)を添加し、室温にて60分間撹拌した後、前記混合物を20,000rpmで遠心分離した。 得られた沈殿物に、0.05%NaN3含有の10mmol/L−Tris−HCl緩衝液(pH8.0)10mLを添加して撹拌し、比較用抗SF抗体感作ラテックス試薬を調製した。【0032】(2)SFの測定 実施例1(4)で調製した標準SF抗原液3μLに、0.1mol/Lリン酸緩衝液(pH6.5)130μLを混合し、37℃で5分間保持した後、比較例1(1)で調製した抗SF抗体感作ラテックス試薬130μLを添加して攪拌し、この添加から10分間経過後までの波長600nmでの吸光度を測定した。結果を図1に示す。【0033】《比較例2》 (1)実施例1(1)で調製したSF抗体結合ビオチン溶液を0.5mg/mLの濃度で10mmol/L−MOPS緩衝液(pH7.0)に溶解した液に、実施例1(2)で用いたアビジンラテックスを1%濃度で加えて室温にて30分間攪拌し、SF抗体感作ラテックスを調製した。こうして得られたSF抗体感作ラテックスを10mmol/L−MOPS懸濁液(pH7.0)で希釈して0.5%SF抗体感作ラテックス懸濁液とし、比較用抗SF抗体感作ラテックス試薬とした。 (2)実施例1(4)で調製した標準SF抗原液3μLに、0.1mol/Lリン酸緩衝液(pH6.5)130μLを混合し、5分間経過後、比較例2(1)で調製した抗SF抗体感作ラテックス試薬130μLを添加して攪拌し、この添加から10分間経過後までの波長600nmでの吸光度を測定した。結果を図1に示す。【0034】 図1において、■は比較例1で調製した抗SF抗体感作ラテックス試薬を、◆は比較例2で調製した抗SF抗体感作ラテックス試薬を使用した場合の結果である。●及び○は、前記実施例1(5)の操作においてそれぞれ本発明による2液系分析用試薬を使用した場合の結果であり、●は、SF抗体結合ビオチン濃度が0.0250mg/mLの場合、そして○は、SF抗体結合ビオチン濃度が0.05mg/mLの場合の結果である。また、▲は、前記実施例1(5)の操作において、SF抗体結合ビオチン不在下(すなわち、SF抗体結合ビオチン濃度=0.00mg/mL)の場合の結果である。 図1から明らかなように、SF抗体結合ビオチン溶液からなる第1試薬と、アビジンラテックス懸濁液からなる第2試薬とから構成される2液系の本発明による分析用試薬を用いると、従来法による通常のラテックスを用いる方法(比較例1)と同等若しくはそれ以上の反応性が得られた。更に、本発明による分析用試薬では、予めビオチン化抗体をアビジンラテックスに結合した方法(比較例2)と比べ、自己凝集がみられないため、SF抗原不在下(0濃度)での吸光度変化量が低い値を示した。これは、測定感度を高める上でも極めて重要な効果である。【0035】《産業上の利用可能性》 本発明によれば、抗体又は抗原をラテックス粒子等の微粒子に担持させるための煩雑な操作が不必要となる。また、ラテックス粒子の自己凝集の発生がみられなくなり保存安定性が向上する。更に、従来技術と異なり、分析対象物質に対する抗体又は抗原をラテックスに担持させる際に、ラテックス表面への吸着によってタンパク質が変性することがないので、分析対象物質に対する反応性に変化が生ずることなく分析対象物質の正確な測定が可能となる。更に、免疫凝集反応に基づく分析対象物質の測定において、通常の抗体(又は抗原)感作ラテックス(物理吸着法)を用いる方法より吸光度の値が上昇して感度が向上した。また、予めビオチン化抗体をアビジンラテックスに結合した方法と比べ、本発明方法はブランク値が低くなり、低値における精度が向上し、高値においても本発明方法は比較例以上の反応性が得られる。本発明の分析試薬は、自動分析機用の分析試薬として適している。 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。【図面の簡単な説明】図1は、実施例1で調製した本発明による2液系分析用試薬を使用した場合と、比較例1及び2で調製したSF抗体感作ラテックスを使用した場合との吸光度変化量の比較を示すグラフである。 (1)分析対象物質を含有する可能性の有る被検試料と、分析対象物質に対する抗原又は抗体にビオチンを結合した結合体(但し、抗原又は抗体に結合するビオチン量が、分析対象物質が存在しない状況下、前記アビジン結合微粒子とは実質的に凝集しない量であるものとする)とを最初に接触させ、続いて、アビジンを結合した微粒子と接触させる工程;及び(2)分析対象物質と結合体との間で形成される免疫複合体、及びアビジン結合微粒子から生じる凝集の程度を検出することにより分析対象物質を分析する工程を含む、免疫学的分析方法。 前記結合体が、抗原又は抗体に1分子のビオチンを結合した結合体である、請求項1に記載の分析方法。 アビジン結合微粒子が、アビジンを結合したラテックス粒子である請求項1又は2に記載の分析方法。