タイトル: | 公開特許公報(A)_緑藻ヘマトコッカスへの外来遺伝子導入方法 |
出願番号: | 2002192703 |
年次: | 2004 |
IPC分類: | 7,C12N15/09 |
近藤 裕 柿薗 俊英 JP 2004033070 公開特許公報(A) 20040205 2002192703 20020701 緑藻ヘマトコッカスへの外来遺伝子導入方法 ヤマハ発動機株式会社 000010076 三好 秀和 100083806 三好 保男 100068342 岩▲崎▼ 幸邦 100100712 栗原 彰 100087365 川又 澄雄 100100929 伊藤 正和 100095500 高橋 俊一 100101247 高松 俊雄 100098327 近藤 裕 柿薗 俊英 7 C12N15/09 JP C12N15/00 A 1 1 OL 38 4B024 4B024AA03 4B024BA80 4B024CA04 4B024DA20 4B024EA04 4B024GA14 4B024HA20 【0001】【発明の属する技術分野】本発明は、緑藻ヘマトコッカスへの外来遺伝子導入方法に関する。【0002】【従来の技術】微細藻類は光合成で増殖し、有用な成分として必須不飽和脂肪酸(DHA、EPA)、アスタキサンチン等を生合成する事から、工業的利用が期待されている。工業化するためには、培養方法の最適化による生産性を改善ばかりでなく遺伝子操作による改良も期待されている。【0003】一方現状では、微細藻類の真核生物である緑藻類に外来の遺伝子を導入(形質転換)して発現させる事に成功しているとの報告はクラミドモナス、ドナリエラ、クロレラ、クロロコッカムに限られていた。【0004】【発明が解決しようとする課題】緑藻類に外来遺伝子を導入する場合2つの課題が有った、▲1▼頑丈な細胞壁を細胞膜の外側に持っていることから、遺伝子を導入が困難。▲2▼一旦外来遺伝子断片を細胞内に導入できたとしても、染色体遺伝子に組み込まれず経代培養を繰り返すうちに(分裂、増殖をするうちに)外来遺伝子が脱落または不活性化してしまう。【0005】本発明は、抗酸化剤アスタキサンチンを生合成することで工業的にも有用性の高い緑藻ヘマトコッカス(Haematococcus)に外来遺伝子を導入・発現させる場合に有効な方法を発見した。遺伝子を導入できた細胞を多くの細胞の中から選び出す方法として、高感度検出が可能なレポータータンパク質(緑色蛍光タンパク質GFP)を発現する遺伝子、Phleomycin 系抗生物質Zeocin 耐性遺伝子、抗生物質ハイグロマイシン耐性遺伝子を緑藻ヘマトコッカス(Haematococcus)に導入し、安定に発現維持させる方法である。【0006】【課題を解決するための手段】第1の発明は、細胞壁の有る状態の緑藻ヘマトコッカス(Haematococcus)にエレクトロポレーション法にて外来遺伝子を導入する方法である。【0007】第2の発明は、細胞壁を取り除いたプロトプラスト状態の緑藻ヘマトコッカス(Haematococcus)にエレクトロポレーション法にて外来遺伝子を導入する方法である。【0008】第3の発明は、細胞壁の有る状態の緑藻ヘマトコッカス(Haematococcus)にデンドリマーを用いたトランスフェクション法にて外来遺伝子を安定的に導入する方法である。【0009】第4の発明は、細胞壁を取り除いたプロトプラスト状態の緑藻ヘマトコッカス(Haematococcus)にデンドリマーを用いたトランスフェクション法にて外来遺伝子を導入する方法である。【0010】第5の発明は、第1ないし第4の発明のいずれかの発明において、酢酸を炭素源とした混合栄養培地で増殖させた緑藻ヘマトコッカス(Haematococcus)を遺伝子導入先とした遺伝子導入方法である。【0011】第6の発明は、第1ないし第4の発明のいずれかの発明において、遺伝子導入後、酢酸を炭素源とした混合栄養培地で増殖させる事を特徴とする遺伝子導入方法である。【0012】第7の発明は、第1ないし第4の発明のいずれかの発明において、栄養増殖期にある緑藻ヘマトコッカス(Haematococcus)の細胞を遺伝子導入先とした遺伝子導入方法である。【0013】【発明の実施の形態】以下、本発明の実施の形態を説明する。【0014】本発明は、抗酸化剤アスタキサンチンを生合成することで工業的にも有用性の高い緑藻ヘマトコッカス(Haematococcus)に外来遺伝子を導入・発現させる場合に有効な方法である。遺伝子を導入できた細胞を多くの細胞の中から選び出す方法として、高感度検出が可能なレポータータンパク質(緑色蛍光タンパク質GFP)を発現する遺伝子、Phleomycin 系抗生物質Zeocin 耐性遺伝子、抗生物質ハイグロマイシン耐性遺伝子を緑藻ヘマトコッカス(Haematococcus)に導入し、安定に発現維持させる。【0015】[応用]▲1▼ 緑藻ヘマトコッカス(Haematococcus)は酢酸を炭素源とした、従属栄養培養、混合栄養培養で培養できる事は報告されているが、本発明を応用して、グルコースを炭素源と出来るタンパク質発現遺伝子GLUT1、HUP1を導入する事でグルコースでも従属、混合栄養培養が可能になり、大量培養が可能となる。【0016】▲2▼ 効性物資耐性を遺伝子導入する事で、緑藻ヘマトコッカス(Haematococcus)の培養にとって有害なバクテリア、ウイルス、カビ、原生動物の駆除が可能となる。【0017】▲3▼ β−カロチンの2次代謝経路を部分的に失活させて、アスタキサンチン(Astaxanthin)に至るまでの中間生成物を生合成させることが可能となる。例えばゼアキサンチン(Zeaxanthin)、カンタキサンチンCantaxanthin)等が有る。【0018】[実施例]広島大学論文を参照[ヘマトコッカスの種について]実施例は、緑藻ヘマトコッカスプルビアリス(Haematococcus pluvialis)NIES−144株による実験結果であるが、同じヘマトコッカスプルビアリス(Haematococcus pluvialis)の近縁種で有るHaematococcus lacustrisでも可能である。【0019】[関連特許等]1.米国パテント US−A1−60279001.1カロテノイドとは・・・カロテノイドは自然界に最も広く分布する色素群の一つである。その基本的な性質として、400〜600 nmに極大吸光を有し、黄色、橙色、あるいは赤色を呈する。また空気、光、熱、酸、金属イオンなどに非常に不安定で、異性化、重合、あるいは分解などを起こしやすいことが知られている。カロテノイドは、メバロン酸を出発物質とするテルペン系物質生合成系により生合成される。その基本構造は炭素数5個のイソプレン分子が8個連なったテトラテルペン(炭素数40個)であり、概して左右対称に近い構造をしている。カロテノイドは、炭化水素であるカロテン類と、それらの酸素誘導体であるキサントフィル類の2種に大別することが出来る。キサントフィル類において酸素原子は、水酸基、カルボキシル基、メトキシ基、あるいはエポキシ基として、主鎖である炭化水素鎖に結合している。キサントフィル類の水酸基は遊離型、高級脂肪酸(炭素数18あるいは20個)とのエステル、糖類と結合した配糖体、あるいは硫酸エステルといった様々なかたちで存在している。また、生体内で蛋白質と複合体を形成し、「カロテノプロテイン」となって存在しているものもある。天然に存在するカロテノイドのポリエン部位は主としてトランス型であるが、近年シス型のものの存在も確認されている。現在までのカロテノイドの立体構造に関する研究の結果、1000種を超えるカロテノイドが知られるに至っている。【0020】カロテノイドは黄色から赤色までの様々な色調を呈することで、植物の果実や花の色、あるいは魚類、甲穀類、鳥類などの体色に寄与し、保護色あるいは婚姻色としての作用を果たしている。さらにカロテノイドは、多くの生物において、その生命維持に関しても重要な役割を担っている。例えば高等植物においては、光合成器官での光受容反応における補助色素としての役割を担っているほか、光酸化反応に対する細胞組織の保護も行っている。また動物細胞においては、カロテノイドの一種であるβ−カロテンが、ビタミンA前駆体としてのプロビタミン活性を有することが知られている。さらに微生物でもカロテノイドを有するものがあり、これらは光酸化反応からの細胞の保護、あるいは生体膜の構造強化、といった役割を担っているのではないかと考えられている。植物や微生物は、自ら必要なカロテノイドを合成する能力を有している。一方において、動物はカロテノイド合成能を欠くものの、食料として摂取した植物、微生物、あるいは他の動物に含まれるカロテノイドを生体内に蓄積し、必要に応じてそれらを代謝変換することにより、その需要を満たしている。以上述べた様に、多くの生物の生体組織においてカロテノイドは欠くことの出来ない構成要素となっており、また人間を含む殆どの動物において、必須の栄養素となっているのである。【0021】さらにこれまで、多くの研究者によって、β−カロテン、ゼアキサンチン、カンタキサンチン、あるいはアスタキサンチンといったある種のカロテノイドが、紅斑や皮膚癌の予防、抗癌作用の促進効果、あるいはフリーラジカルや一重項酸素といった活性酸素の消去作用等といった、ビタミンE(α−トコフェロール)に類似する機能を有することが確認されている。このため近年、食料品などに対する抗酸化剤として、あるいは活性酸素に起因する各種の疾患に対する医薬品としてのカロテノイドの利用が注目を浴びている。また、近年、健康の促進を売り物とするいわゆる「機能性食品」が、その市場を急速に増幅させている事実を鑑みるとき、カロテノイドの食品添加物としての需要も、今後大いに期待できるであろう。【0022】1.2ケトカロテノイド・アスタキサンチンの機能と用途アスタキサンチン(3,3’−ジヒドロキシ−β,β’−カロテン−4,4’−ジオン)は赤色を呈するキサントフィルの一種であり、1933年にKuhnらによってザリガニより発見された。このカロテノイド色素は、サケ、マス、マダイ、錦鯉、あるいは金魚などの魚類、カニ、エビなどの甲殻類、さらにはフラミンゴなどの鳥類などというように、動物、特に水産生物に広く分布しており、その肉色や体色の発現に深く関与していることが知られている。これらの動物はアスタキサンチン生合成能を欠く。このためこれらの動物は、アスタキサンチンを含む植物、微生物あるいは他の動物を餌として摂取することにより、その需要を満たしている。【0023】文明の進化と共に人口も増加し、特に19世紀始めの産業革命以降、その増加は急激となっている。このため食料消費も増加しており、今後さらに増加すると考えられる。太古より、魚類及び甲殻類は重要な蛋白源として、人間によって補食されてきた。このため蛋白質の安定的な供給源として、サケ、マス、カニ、エビなどといった魚類及び甲穀類の養殖は、北欧、南米、極東などにおいて古くから行われており、今後益々盛んになると考えられている。さらに近年、特に一定以上の生活水準を得るに至っている先進諸国において、食生活の質的な向上を求める動きが顕著となっている。この動きに関連して、マダイ、伊勢エビ、あるいは車エビといった従来高級品とされてきた魚類及び甲穀類に対する需要が、1980年以降急速に増加しており、またスモークサーモンといった高価な加工品に対する需要も急速に伸びている。先にも述べた通り、アスタキサンチンは多くの魚類及び甲穀類に分布し、また多くの場合その主要色素となっている。そしてこれらの生物が自らアスタキサンチンを生合成する能力を欠いていることもまた、前述した通りである。このため、サケ、マス、カニ、エビなどの養殖に際しては、養殖産物に鮮やかな色彩を与え、またその品質を保持するため、アスタキサンチンを飼料に添加することが必須となっている。さらに、スモークサーモンの有する薫製独特の薫りの形成においてアスタキサンチンが重要な役割を担っているという例に見られる様に、これらの養殖魚類及び甲穀類から生産される加工品の品質に対しても、アスタキサンチンの存在の有無、あるいはその多寡は重要な要素となる。以上述べた事実により、魚類及び甲穀類の養殖において、色揚げ剤としてアスタキサンチンは重要であり、その需要は莫大で、また今後益々増加すると言えよう。【0024】一方において、近年、アスタキサンチンがβ−カロテンやビタミンEよりもはるかに強力な抗酸化作用を有する事実を認めた研究が数多く報告されている。以下、これらの報告に関して、順を追って略述する。まず、リノール酸メチルのフリーラジカル連鎖反応に対する、β−カロテン、ゼアキサンチン、カンタキサンチン、及びアスタキサンチンの抑制効果が検討され、β−カロテンよりもむしろアスタキサンチンの様なケトカロテノイド類の方が、より強い抑制効果を示すことが認められている。また、ラットを用いた脂質過酸化反応に対するアスタキサンチンの阻害効果が検討され、アスタキサンチンがビタミンEの約1000倍にのぼる強い活性を有することを示されている。また、マダイの養殖において、活性酸素に起因すると考えられる卵及び稚魚の発育障害に対し、微量のアスタキサンチンを親魚の飼料に添加する事で、アスタキサンチン無添加区は勿論、β−カロテンあるいはビタミンE添加区と比較しても遥かに優れた改善効果が得られたと報告されている。さらに、マウスMeth A腫瘍細胞を用いた実験により、ビタミンAと同様、アスタキサンチンによっても抗腫瘍免疫賦活化効果が発現する事実が報告されている。近年特に先進諸国において、いわゆる健康食品の市場が急速に増大していることは、前述の通りである。加えて、近年、腫瘍性疾患が病気による死因に占める割合が急速に増大しており、これらの疾患に対する治療技術の改善が急務となっている。以上述べてきた事実を合わせ考える時、食品添加物として、あるいは医薬品として、アスタキサンチンは非常に魅力に富んでおり、将来この方面での新規の需要も期待できるであろう。【0025】1.3天然アスタキサンチン源としてのHaematococcus pluvialis1967年にWeedonらによってアスタキサンチンの化学合成法が考案され、1983年にロシュ社によってその工業的な生産法が確立されるに至っている。このため現在、アスタキサンチンは主として化学合成法によって工業的に生産されている。しかし、食品あるいは飼料に対する添加物としての化学合成品の使用は年々規制される方向にあり、また市場においても天然物を指向する向きにある。以上の背景により、今後、天然の、そして安定したアスタキサンチン源の確保が必要となろう。【0026】現在、アスタキサンチン生産能を有する数種の微生物の存在が報告されている。【0027】中でも不完全酵母に類するPhaffia rhodozymaと単細胞緑藻であるHaematococcus pluvialisは、細胞内に有するところのカロテノイド色素の殆ど(90%以上)がアスタキサンチンであるため、工業規模におけるアスタキサンチン生産に対し、最も有望な微生物であるとされている。【0028】P. rhodozymaのアスタキサンチン生成に関しては多くの報告があり、生成したアスタキサンチンは(3R,3’R)型の遊離型で(Andrewes&Starr 1976)、その含量は0.4mg/g cellと低く(Johnson&Lewis 1979)、また細胞壁が非常に硬く抽出が困難なことなどが知られている(Okagbue&Lewis 1985)。【0029】一方、緑藻のH. pluvialisは、通常、増殖期の細胞は緑色であるが、増殖末期あるいは窒素欠乏等の生育環境の悪化に伴い、細胞内に著量のアスタキサンチンを蓄積することが知られている。また、生成したアスタキサンチンは魚類などと同じ(3S,3’S)型のエステル型であり(Renstrom et al. 1981)、その大部分は遊離型よりも色揚げ効果が高く、安定なモノエステル型として存在している。【0030】また、図1及び2にβ−カロテン合成経路、図3にアスタキサンチン生合成経路を示した。【0031】1.4本研究の目的本研究室において、H. pluvialisのアスタキサンチン生成に関する研究から以下のことが分かっている。通常一ヵ月程度かかる栄養細胞からシスト細胞への形態変化は、高濃度の酢酸を途中添加することによって、炭素/窒素比を上げて相対的な窒素源の欠乏をもたらせば、1−2日でシスト化が誘導できること、さらに、酢酸で誘導したシスト細胞に高濃度のFe2+を与えると、アスタキサンチン生成が著しく促進され、この効果がH2O2やスーパーオキシドアニオンラジカル(O2−)、一重項酸素(1O2)等の活性酸素によって代替できること、および活性酸素に対する捕捉剤や消去剤によって促進効果が消去するかとから、Fe2+はFenton反応(Fe2++H2O2→OH−+HO・+Fe3+)によって、最も反応性の高いヒドロキシルラジカル(HO・)を生成することによってアスタキサンチン生成を活性化していることを明らかにした。従って、シスト細胞におけるアスタキサンチン生成促進は酸化的ストレスに対する適応応答の一つであろうと考えられる。【0032】本緑藻の増殖とアスタキサンチン生産を促進するには、他の多くの藻類と同様、光が必須となる。一方で本緑藻の増殖速度は細菌類と比較して極めて低く、またその至適pHは中性付近であるため雑菌の汚染を受けやすく、従来藻類の培養で報告されている開放培養は適用できない。【0033】そこで本研究では、本緑藻における高濃度アスタキサンチン生産と培養が安易な菌株の取得を行うために、外来遺伝子導入法の確立を目的とした。本研究では電気穿孔法及びリポソーム法を用いたH. pluvialisの形質転換の可能性についての検討を行った。電気穿孔法(Electroporation)とは、リン酸カルシウム共沈法、DEAE・デキストラン法などと並び、遺伝子を導入する有力な手段である。【0034】電子穿孔法は、細胞の浮遊液にDNAを加え、数千V/cmの高電圧を数十マイクロ秒のパルスで与えて細胞にDNAを導入するもので、高電圧パルスにより細胞膜に短時間、細孔が生じ、それが修復される前に外液とともにDNAが取り込まれるという原理です。他の遺伝子導入法と比べて再現性が良い点、動物細胞のほか、高等植物、酵母、細菌などのプロトプラスト、リンパ球等の浮遊細胞にも適用できる点などが優れています。この方法は、リン酸カルシウム共沈法では導入効率が悪い初代培養細胞、胚性肝細胞などにも有効である。また、電子穿孔法の有効性の確認のためデンドリマーという高分子を用いたリポソーム法による形質転換も行った。この方法は、特別な装置を必要とせず、容易に形質転換が行える。今回用いたQIAGENのSuper fect Transfection Reagentという試薬は、わずか5〜10分でトランスフェクション複合体形成し、 広範囲の細胞タイプに適応し、 斬新な分子デザインでトランジェントあるいはステーブルトランスフェクションにも高い効率を示し、 活性型デンドリマーの均一なサイズと形状により非常に高い再現性 を得る事のできる試薬である。原理は、SuperFect Reagentが、一定の形状の活性型デンドリマー分子から形成し、これらの分子は中心から枝分かれし、末端にはプラスに電荷したアミノ基を有しており、核酸のリン酸基(マイナスに荷電)と相互作用し結合する。SuperFect ReagentはDNAを細胞に導入しやすいようにDNAをコンパクトな形に凝縮する。細胞にいったん入ると、エンドソームと融合後、SuperFect Reagent の緩衝作用によりpHを変化させ、リソソームのヌクレアーゼ活性を阻害する。SuperFect−DNA複合体の安定性がこのメカニズムにより確実になり、インタクトなDNAが効率良く核に導入される。SuperFectは登録商標である。【0035】これらの2通りの方法を用いてH.pluvialisにおける形質転換を行い、GenotypeとPhenotypeの解析及び諸条件の検討を行って、本緑藻における遺伝子導入法の開発を目指した。【0036】図4に電気穿孔法の原理を、図5にデンドリマーによるリポソーム法の原理を示した。【0037】2.実験方法2.1使用菌株国立公害研究所微生物系統保存施設(Microbial Culture Collection,The Natioal Institure For Environmental studies)より分譲されたHaematococcus pluvialis Flotow(NIES−144)を用いた。【0038】2.2使用培地H.pluvialisの増殖用培地として、表1に示す組成の基本培地(Basal medium)を用いた。【0039】【表1】【0040】2.3培養方法2.3.1前培養200ml三角フラスコに培地90mlを入れシリコン栓をしてオートクレーブ(120℃、18min)で殺菌した。その後、同様の培地で20℃、17.1μEm−2s−1(1500lux)、12時間間欠照射で4日間静置培養したものを10%(v/v)接種し、同条件で4日間静置培養を行った。【0041】2.3.2本培養・通常培養殺菌済培地90mlに前培養した培養液を10%(v/v)接種し、20℃で4日間、12時間の間欠照射下で静置培養を行った。この培養液をそれぞれの方法で、形質転換に用いた。【0042】・同調培養青色のフィルムを巻いたビーカーを培養液の入ったフラスコに被せる事により、照射する光を弱め、増殖をある程度抑えることにより、細胞増殖を同調化した。殺菌済培地50mlに前培養液50mlを加え、20℃で4日間、12時間の間欠照射下で静置培養を行った。同様の操作を2〜3回繰り返すことにより細胞増殖を同調化した。【0043】2.4プロトプラスト処理Solbitol/Mannitol(0.2M 1:1)を前solutionへ添加した。まず、ダークサイクルから細胞を遠心分離(10℃、360g、10min)で回収した。次に、B培地で遠心洗浄しB培地に2.4×106 cell/mlになるようにして懸濁し、0.06%のプロテアーゼK(シグマ)を添加する。往復式シェーカーで90ストローク/minで35℃、0.5から1Hインキュベートした。【0044】以上の操作を行ったサンプルを0.1mlずつそれぞれ1.9ml TritonX100と1.9ml Solbitol/Mannitol(0.2M 1:1)に加えてゆっくりと撹拌し、それぞれの細胞数X1とX2を測定する。また、プロトプラスト処理によりモル濃度浸透圧に対して感受性になった細胞の割合を示す式を以下に示す。【0045】【数1】【0046】2.5電気穿孔における形質転換条件の検討電気穿孔法により、細胞内へ物質が導入されることの確認及びその最適条件を決定するために、蛍光物質であるFluorescein Isothiocyanate−dextran(FITC−dextran,70kDa)を用いて電気穿孔を行った。電気穿孔条件の決定後、遺伝子導入を形質転換の可能性について検討を行った。【0047】2.5.1 FITC−dextranを用いた形質転換条件の検討FITC−dextranの細胞内への導入に及ぼす印加電圧およびパルス回数の影響を検討するために、電気穿孔時の細胞濃度を1×106Cell/ml、FITC−dextran濃度を1mMとし、印加電圧およびパルス回数を変化させて電気穿孔を行い、フローサイトメーターで蛍光を測定し、条件の検討を行った。【0048】2.5.2電気穿孔による生存率測定電気穿孔における印加電圧およびパルス回数による生存率の変化に関する条件検討を行った。【0049】まず、4日間培養後の試料を遠心分離により集菌し50μM MOPS+5%Polyethylene glycol(PEG)に懸濁した。400μlキュベット(2mm gap)に試料360μlとFITC−dextran40μlを加え、色々な印加電圧とパルス回数において条件の検討を行った。【0050】2.5.3 pHyg−e−GFP(CLONTECH製)とsmRS−GFP(TAIR社製)の電気穿孔による導入H.pluvialisにプラスミドpHyg−e−GFPとsmRS−GFPを導入し、フローサイトメトリーにより発現した蛍光タンパクGreen fluorcesein protein(GFP)の検出を行った。また、pHyg−e−GFPにおいては、その後、プレート及び液体培地でハイグロマイシンをselectable markarとしてスクリーニングを行い、その後の解析に用いた。【0051】2.5.4液体培地におけるハイグロマイシン濃度の検討液体培地におけるH.pluvialis細胞のタンパク合成阻害系抗生物質ハイグロマシンに対する感受性をテストするために、さまざまな濃度のハイグロマイシンを培地に加え、wild typeのH.pluvialisを培養して条件を検討した。【0052】2.5.5プレートにおけるハイグロマイシン濃度の検討プレートにおけるH.pluvialis細胞のタンパク合成阻害系抗生物質ハイグロマシンに対する感受性をテストするために、さまざまな濃度のハイグロマイシンをプレートに加え、wild typeのH.pluvialisを培養して条件を検討した。【0053】2.6高分子デンドリマー(SupreFect Transfection Reagent,QIAGEN製)を用いたリポソーム法による形質転換高分子デンドリマーを用いた、H.pluvialisの形質転換を以下の方法で行った。【0054】(1) TE buffer及び滅菌水に溶解したプラスミドDNAの5μg(0.1μg/μl)を滅菌済培地で希釈し、最終容量150μlにし、ミックスした後、数秒間スピンダウンして溶液を収集する。【0055】(2) SuperFect Transfection Reagent20μlをプラスミドDNA溶液に添加する。10秒間ボルテックスした後、スピンダウンして溶液を収集する。【0056】(3) DNA複合体形成のために室温(15〜25℃)で5〜10分間インキュベートする。【0057】(4) 細胞培養液1mlをトランスフェクション複合体を含むチューブに添加する。ピペットで2回アップダウンを行いミックスする。【0058】(5) 複合体が均一に行き渡るように静かに撹拌する。【0059】(6) 2〜3時間インキュベートする。【0060】(7) 2回遠心洗浄し、滅菌済培地に細胞を懸濁する。【0061】2.7プラスミド調整Endofree plasmid Mega kit(QIAGEN社製)とWizard plus SV minipreps(Promega社製)を用いて大腸菌からプラスミドを回収した。【0062】2.7.1 Wizard plus SV minipreps(Promega社製)によるプラスミド調整(1) LB培地から大腸菌を遠心分離により回収した。【0063】(2) 大腸菌をLysis solutionに懸濁し、5分間インキュベートした。【0064】(3) 14000×gで10分間室温で遠心分離することにより細胞断片の除去を行った。【0065】(4) 上清をSpin column+Collection tubeに入れた。【0066】(5) 14000×gで1分間室温で遠心分離を行い、コレクションチューブから液体を捨てた。【0067】(6) 2回Column wash SolutionでSpin columnに付着したDNAを洗浄した。【0068】(7) Spin columnを無菌のマイクロチューブに移し、100μlのNuclease−Free Waterを加え、14000×gで1分間室温で遠心してプラスミドを回収した。【0069】2.7.2 Endofree plasmid Mega kit(QIAGEN社製)によるプラスミド調整以下に簡単な方法を示す。【0070】(1) LB培地から大腸菌を遠心分離により回収した。【0071】(2) 菌体ペレットを50mlのRnase入りBufferP1に懸濁した。【0072】(3) 50mlのBufferP2を添加して静かに混合し、5分間室温でインキュベートした。【0073】(4) 50mlの冷却したBufferP3を添加し、静かに混合した。【0074】(5) QIAfilterカートリッジの中に(6) ライゲートを注ぎ、浮遊層を形成させるために室温で10分間インキュベートした。【0075】(7) バキュームのスイッチを入れ、液を通過させた。【0076】(8) 50mlのBufferFWBをカートリッジに添加し、滅菌したスパチュラで沈殿をステアして再び液を通過させた。【0077】(9) 12.5mlのBufferERをろ過したライセートに添加し、混合した後、氷上で30分間インキュベートした。【0078】(10) 35mlのBufferQBTをQIAGEN−tip2500に加え、カラムが空になるまで自然流出し、平衡化した。【0079】(11) 先ほどのライセートを平衡化したQIAGEN−tipに添加し、自然落下によりカラムに浸透させた。【0080】(12) 2×100mlのBufferQCでQIAGEN−tipを洗浄した。【0081】(13) 35mlのBufferQNでDNAを溶出した。【0082】(14) 溶出液に0.7倍容量(24.5ml)の室温イソプロパノールを添加してDNAを沈殿した後、4℃、15000×g以上で30分遠心した。【0083】(15) 上清を丁寧にデカンテーションした。【0084】(16) DNAペレットに室温のエンドトキシンフリー70%エタノールを7ml添加し、15000×g以上で10分間遠心しペレットを洗う。【0085】(17) 再び上清をデカンテーションし、10〜20分間、ペレットを乾燥させ、エンドトキシンフリーTEバッファーに溶かした。【0086】2.8 PCRKOD−Plus(TOYOBO製)というキットを用いて、PCRを行った。【0087】2.8.1 PCRプライマーForward primer−CTTTCAGCTTCGATGTAGGAGG− 22mer Tm 66Reverse primer−GCCATGATATAGACGTTGTGGC− 22mer Tm 66以上の2つのプライマーをもちいてpHyg−e−GFP(約5Kb)のPCRを行った場合、約1KbがPCR産物として生成される。【0088】2.8.2 PCR条件前処理 94℃ 5min熱変性 94℃ 30sアニーリング 57〜63℃ 30s ←基本的には 61℃で行った。【0089】伸長反応 68℃ 1min後処理 68℃ 5min【0090】3.分析方法3.1 細胞増殖及び藻体量の測定微細藻類の生長の過程は、細胞数の増加、細胞体積の増加の増加などで追跡することができる。本実験では、計数法により藻体の増殖を調べた。【0091】3.1.1 細胞数の測定培養液を懸濁後、トーマの血球計算板(Thoma haemacytometer)を用い、150倍で検鏡し、細胞数を計測した。一つの試料について5回測定を行い、平均値を求めた。【0092】3.2 色素(クロロフィル、カロテノイド)の抽出及び定量緑藻はクロロフィルaとクロロフィルbを含有している。なお、クロロフィルaはすべての分類群の藻類に含まれる。本実験では、SCOR−Unesco(1966)の式を使う吸光光度法によりクロロフィル、カロテノイドを定量した(Strickland&Parsons 1968)。操作手順を以下に示す。【0093】▲1▼増殖状態に応じて適当に希釈した培養液1mlを、グラスファイバーフィルター(GS25,ADVANTEC,TOYO)で吸引濾過する。【0094】▲2▼乳鉢を用い、1mlの水を加えフィルターを磨砕する。フィルターがよく磨砕され液状になったら、アセトン4mlを加え試験管に移す。さらに乳鉢を5mlのアセトンで洗浄後、洗浄液を試験管に加え10mlとする。(最終アセトン濃度:90%)▲3▼試験管はブチルゴムで栓をし、ときどき撹拌しながら冷暗所で1時間抽出した後、遠心分離(3500rpm,10min)し、透明な上清を得る。【0095】▲4▼上清の吸光度(750,663,645,630,480nm)を分光光度計を用いて測定する。光路1cmのセルを用いたとき、663、645、630nmにおける吸光度の読みから750nmの読みを差し引いた値をそれぞれE663、E645、E630とすれば次式により90%アセトン抽出液1.0mlあたりのクロロフィル量(μg)が計算される。【0096】クロロフィルa(μg/ml)=11.64E663−2.16E645+0.1E630クロロフィルb(μg/ml)=−3.94E663+20.97E645−3.66E630カロテノイドに関しては、480nmにおける吸光度の読みから750nmの読みの3倍を差し引いた値をE480とすれば、90%アセトン抽出液1ml中の含量は次式によって求めることができる。【0097】カロテノイド(μg/ml)=4.0E480上式で求めた各値に抽出液量(10ml)を掛け、濾過した試水の量(1ml)で割り、希釈率を掛ければ培養液中のクロロフィル量、カロテノイド量(mg/l)が得られる。なお本実験では、緑藻において一番多く存在するクロロフィルaをクロロフィルとして示すことにする。【0098】3.3蛍光分光光度計による蛍光の測定まず、FITC−dextranについては、蛍光を測定するためにexcitationおよびemission決定する必要性があったことから、FITC−dextranをD. bardawilの増殖用培地に適当な濃度になるように懸濁し、蛍光分光光度計でexcitationを固定してemissionのスキャンを行い、そのデータから特異的だと思われる波長にemissionを固定してexcitationのスキャンを行った。さらにこのデータから特異的であると思われる波長にexcitationを固定しemissionのスキャンを行った。この操作を数回繰り返しexcitationを500nm、emissionを555nmと決定した。【0099】GFPについては、excitation:400−450nm、emission:500−540nmの範囲で測定を行った。【0100】3.4蛍光顕微鏡による細胞の観察FITC−dextranおよびFluorescein Diacetate 、GFPの顕微鏡による蛍光の観察は、V励起法 (励起フィルタ:IF395〜425、接眼側吸収フィルタ:BA510/40) およびB2励起法 (励起フィルタ: IF460〜485、接眼側吸収フィルタ:520W)により行った。【0101】3.5サザンハイブリダイゼイションハイブリダイゼーションは、Amersham LIFE SCIENCE社のCDP−StarTM detection KITを用いて行った。その方法を以下に示す。【0102】3.5.1 DNAのラベリングp35S−GFP (1・g)を制限酵素処理により切断した。フェノール・クロロホルム処理し、エタノール沈殿を行った。沸騰水中で10分間加熱し、氷/NaCl上で急冷して、DNAを一本鎖に変性した。そこに2・lのヘキサヌクレオチド混合液、2・l dNTP標識混合液、1・l Klenow 酵素を加え、フラッシュ後、1時間から20時間 (オーバーナイト)、37℃でインキュベートした。2・lの0.2M EDTA (pH8.0)を加えてラベリング反応を停止させた。エタノール沈殿処理後、50・lのTE bufferに溶解した。【0103】3.5.2 DNAの抽出DNAの抽出には、Fast DNA spin−kit を用いた。試料培養液を3500rpm、10分間遠心分離して藻体を集菌した。そこにSodium Phosphate Bufferを添加し、塩濃度をあげて細胞を破壊した。次にたんぱく質を沈殿させ、遠心により沈殿物をペレット化した。上清を回収し、バインディングシリカマトリックスにDNAを吸着させ、これにTE bufferを添加してDNAを遠心分離、回収した。抽出したDNAは、TE bufferに溶解し、4℃で保存した。【0104】3.5.3 アガロースゲル電気泳動抽出したDNAおよびpHyg−e−GFPを制限酵素 (bgl II) で37℃、60分間切断し、 0.8〜1.0%のアガロースゲル (LO3 「TAKARA」) にて電気泳動を行った。【0105】3.5.4 ブロッティング電気泳動の終わったアガロースゲルをメンブレントランスファーを行う前に、genetic DNAのシングルコピーの検出を行った。その方法は、まず0.25N塩酸中に浸し室温で15分ゆっくり浸透し、滅菌蒸留水で2回洗った。アガロースゲルを0.5N NaOHに浸し、室温で30分間ゆっくり振とうした。ゲル中のDNAをバキュームブロット法 (5in. Hg.) でメンブレンにトランスファーした。その後、湿った状態のメンブレンをUVでクロスリンクした。【0106】3.5.5 ハイブリダイゼーションAlkPhos Direct hybridization buffer(amersha pharmacia biotech社製Kit)に0.5M NaClと4%Blocking bufferを加え、室温でゆっくりとインキュベートし、ハイブリバッファーを調整した。メンブレンに対し、0.25ml/cm2で先のオリジナルバッファーを添加し、予め暖めておいて、メンブレンとともにプラスチックシールドパックに入れシールし、ゆっくり浸透しながら(60ストローク/分)55℃で15分間インキュベートし、プレハイブリダイゼーションを行った。ラベリングされたプローブを暖めておいたハイブリダイゼーション液に(5〜10μg/ml)添加し、よく混合した。そのまま、55℃でオーバーナイトインキュベーションを行った。その後、あらかじめ暖めておいたPrimary wash bufferをメンブレン当り2〜5ml/cm2添加し、55℃で10分間、2回ゆっくりと振とう洗浄を行った。次に、Secondary wash bufferで5分間、室温で2回ゆっくりと振とう洗浄を行った。【0107】3.5.6 化学発光による検出Ditection reagentを30〜40μl/cm2添加して2〜5分間静置し、DNAをトランスファーした面を上にしてDetection bagに入れて、フィルムカセットに入れた。X−RAY film(オートラジオグラフィー・フィルム)を当てて、暗室、室温で1時間静置して検出を行った。【0108】【0109】3.6フローサイトメーターFACScan(BECTONDICKINSON社製)フローサイトメターを用いて、形質転換体における蛍光タンパクGFPの発現及び、細胞の大きさの検討を行った。フローサイトメターは、細胞の大きさをFSC、515から525nmの蛍光波長をFL1として検出できる。図8,図9にフローサイトメターの原理を示す。【0110】3.7ウエスタンブロットH.pluvialisにおけるタンパク発現を確認するためのウエスタンブロットは、BIO−RAD社製のAmplified Alkaline Phosphatase Immun−Blot Assay kitとAP Conjugate Substrate Kitを用いて行った。方法を以下に示す。【0111】3.7.1タンパク質調整試料を遠心し、クロロフィルを除去するために適当量の−20℃アセトンに懸濁する。それをFilter paper(size 47mm,Toyo Roshi 社製)で吸引濾過し、SDS−PAGE用サンプルバッファーを加え、超音波処理を行った。これを−20℃で保存した。【0112】3.7.2 SDS−PAGEタンパクを変性させるためにサンプルを100℃で10分間ボイルし、その後200V、40分間SDS−PAGEを行った。【0113】3.7.3 メンブレントランスファーSDS−PAGEを行ったゲルとメンブレンとをサンドウィッチし、ミニ−トランスブロット−セル(BIO−RAD社製)を用いて350mA,100V,1hという条件で、冷やしながらメンブレントランスファーを行った。【0114】3.7.4 イミュノブロット1.メンブレンに20mlのブロッキングソリューションを加え1時間室温でインキュベートした。2.TTBSを用いて5〜10分間洗浄を行った。(同じ作業を2回繰り返す)3.第一抗体ソリューションを添加し、オーバーナイトインキュベーション。4.TTBSを用いて5〜10分間洗浄を行った。(同じ作業を2回繰り返す)5.第二抗体を添加し、1〜2時間撹拌しながらインキュベーション。6.TTBSを用いて5〜10分間洗浄を行った。(同じ作業を2回繰り返す)7.ストレプトアヴィジン−ビオチン標識アルカリフォスファターゼ・コンプレックスを添加し、1〜2時間撹拌しながらインキュベーション。8.TTBSを用いて5〜10分間洗浄を行った。(同じ作業を2回繰り返す)【0115】3.7.5 発色ニトロセルロースメンブレンを発色ソリューションに液浸し、発色させる。その後、超純水に10分間、丁寧に浸して浸透することにより発色を止める。少なくとも、もう一度同じ作業を行う。【0116】3.7.6 試薬ストックソリューションTris−buffered saline,×10(×10 TBS)(200mM Tris,5M NaCl,pH 7.5)Clor development bufferm,×25 concentrateワーキングシソリューション(based on 20 assays of 5ml each)Tris−bufferd saline(TBS)(20mM Tris,500mM NaCl,pH 7.5):100mlの×10 TBSを900mlの超純水に添加(1× TBS)洗浄バッファー(TTBS)(pH 7.5):450μlのTween−20を×1TBS900mlに添加ブロッキングソリューション(5% non−fat dry milk in TBS):5.0gの脱脂粉乳を100mlのTBSに添加し、溶けるまで撹拌第一抗体ソリューション:第一抗体を適当な力価のTTBS 100mlに希釈(TTBS 2.5mlに「リビングカラー」を2μl添加第二抗体ソリューション:10mlのTTBSにビオチン標識された「羊−抗ウサギ抗体」を3.3μl添加ストレプトアヴィジン−ビオチン標識アルカリフォスファターゼ・コンプレックス:10mlのTTBSに3.3μlのストレプトアヴィジンとビオチン標識アルカリフォスファターゼを添加し、1〜3時間インキュベートしたAP発色バッファ:AP発色バッファは、×25でストックし、超純水で希釈した【0117】3.8 使用機器人工気象器日本医科機器製作所製、 LH−200−RD日本医科機器製作所製、 LH−300−RDS分光光度計島津製作所製、 UV−1600蛍光分光光度計日本分光社製、 FP−770蛍光顕微鏡Nikon製、 生物顕微鏡OPTIPHOTNikon製、 落射蛍光装置EFD遠心分離器久保田商事製、 KR−20000T久保田商事製、 1710久保田商事製、 1720電気穿孔装置BTX社製、 ECM630電気泳動ゲル撮影機TOYOBO社製 FAS−IIIPCR用Program temp control systemASTEC社製 PC808ハイブリオーブンKURABO社製 DNA Oven Ml−100クリーンベンチHITACHI社製 CCV clean BenchNK system社製Water bath ShakerTAITEC社製 MM−10電気泳動機TOYOBO社製 GelMateバキュームブロッター【0118】4.実験結果および考察4.1 Hematococcus pluvialis細胞の増殖とアスタキサンチン生成についてH.pluvialisは、強照射、栄養源の減少、塩ストレスなどの環境ストレスに対応してシスト細胞を形成する。また、本菌の最適増殖温度は20℃であり、30℃の場合においてもシスト細胞を形成し、細胞数の増殖がほとんど見られない。(図10)しかし、アスタキサンチン生成に関しては、栄養細胞状態ではなく、ストレスに対応したシスト細胞状態で多量に蓄積さる。従って、20℃の培養条件よりも、30℃の方が多量にアスタキサンチンを生産した(図11)。【0119】4.2蛍光物質を用いた電気穿孔Fluorescein Isothiocyanate−dextran(FITC−dextran,70kDa、濃度0.1mM)は、細胞内に取り込まれた場合、微量でもフローサイトメトリーによりその蛍光が検出できることから、モデル物質として使用し、電気穿孔により物質が細胞内に導入されることの確認とその条件について検討を行った。【0120】4.2.1印加電圧に関する細胞の生存率印加電圧を変化させた時の細胞の生存率について検討を行った。尚、印加時間は、50μsecとし、印加電圧は、0から200V/2mm gapまで50V/2mm gap刻みで変え、細胞の生存率の変化を調べた。(図12)印加電圧に依存して、細胞の生存率が減少していくことが確認できた。また、100V以上の電圧では、細胞がくっつきあって、凝集していることが確認できた。【0121】4.2.2通常細胞における印加電圧に関するモデル物質FITC−dextranの細胞内への導入効率細胞濃度を2×106cell/mlとし、0.1mMのFITC−dextranを含む溶液中で印加電圧を変化させて電気穿孔を行い、FITC−dextranの導入について比較した。測定は、フローサイトメトーターを用いてトータルセル2×104について行った。(図13)そして、ゲート内の細胞の割合を図14に示した。印加電圧に依存してFITC−dextranの導入効率は良くなったが、75V/2mm gap以上では細胞が凝集してしまうため、細胞の生存率も考慮して、以降の実験では通常細胞を用いる場合、印加電圧を50V/2mm gapと設定して実験を行った。【0122】4.2.3プロトプラスト細胞における印加電圧に関するモデル物質FITC−dextranの細胞内への導入効率H.pluvialis細胞には、細胞壁の外側に厚い外膜が存在し、それがFITC−dextran の導入の妨げになっていると考え、外膜及び細胞壁を取り去った浸透圧感受性のプロトプラスト細胞において、FITC−dextran の導入を行った。(図15)この場合、電圧を加えることにより細胞が破裂してしまうため、有効なFITC−dextran の導入効率が得られなかった。そのため、以降の実験では、通常栄養細胞において条件の検討を行った。【0123】4.2.4パルス回数に関する細胞の生存率印加電圧と同様に、導入効率に大きく影響するといわれるパルス回数に関する検討を行った。まず、パルス回数に依存した細胞の生存率の検討を行った。(図16)その結果、パルス回数を増やすと、細胞の生存率が低下していくことが確認できた。これは、パルス回数を増やすことにより細胞が破壊される為だと考えられる。【0124】4.2.5通常細胞におけるパルス回数に関するFITC−dextranの導入効率印加電圧を50V/2mm gapと設定し、パルス回数に依存したFITC−dextranの導入効率の検討を行った。(図17)パルス回数1回の場合よりも2回の場合の方が導入効率がよく、また3回以上だと細胞が破壊されてしまう為に導入効率が低下した。そのため以降の実験では、通常細胞を用い、印加電圧50V/2mm gap、パルス回数2回、印加時間50μsecと設定し、遺伝子の導入実験を行った。【0125】4.2.6FITC−dextran導入細胞の顕微鏡確認FITC−dextranの導入された細胞のフローサイトメーターによる確認だけではなく、蛍光顕微鏡を用いた確認も行った。(図18)530nm付近の蛍光波長で観察を行ったところ、きちんと細胞内にFITC−dextranが導入されていることが確認できた。FITC−dextranが導入された細胞では黄緑色の発色を呈し、UVを照射した場合では、クロロフィルが赤色に発色した。【0126】4.3 形質転換方法に関する発現効率2種類のプラスミド及び、2種類の外遺伝子導入法をもちいることによる、外来遺伝子の発現効率の検討を行った。そして、これらの方法により、H.pluvialisにおいて外来遺伝子が発現するかの確認を行った。【0127】4.3.1通常細胞における電気穿孔法を用いた形質転換電気穿孔法による2種類のプラスミドpSmRS−GFP(図7)とpHyg−e−GFP(図6)の導入を行った。どちらのプラスミドもGFP(緑色蛍光たんぱく質)をレポーター遺伝子として含んでいる。両方のプラスミドともcauliflower mosaic virus(CaMV)の35S promoterをコードしており、このpromoterは、類縁緑藻Chlamydomonas reinhardtiiで電気穿孔による外来遺伝子の導入で使用され、発現が確認されている。GFPはアメリカ沿岸に生息するオワンクラゲがもつ、全238アミノ酸残基からなる分子量26900のタンパク質で、その遺伝子はすでにクローニングされている。そして、GFPは紫外線を当てると緑色の蛍光を発するが、その際に特別な基質やATPなどのエネルギー源を必要としない。さらに、このタンパク質の遺伝子を導入・発現させると、様々な生物中で発光することが出来る。今回用いたGFPは、異種生物においても発現しやすく、また蛍光強度を高める操作がなされている。これらのプラスミドを用いて、電気穿孔によるこれまでに決定した条件でのH.pluvialisの形質転換を行った。プラスミド導入後、フローサイトメーターによって、処理した細胞の蛍光を測定した。(図19)コントロールと比較して、どちらのプラスミドを用いた場合でも蛍光を発する細胞の数が増加し、GFPが発現していることが確認できた。そして、プラスミド1μg当りの効率で考えた場合、約2000GFP positive cellが得られ、これは類縁緑藻Chlamydomonas reinhardtiiにおいて初めて外来遺伝子発現が報告された時と同等の効率でした。【0128】4.3.2通常細胞におけるデンドリマーを用いた形質転換電気穿孔法の場合と同様に2種類のプラスミドpSmRS−GFP(図7)とpHyg−e−GFP(図6)を用いて、デンドリマーによるH.pluvialisの形質転換を行った。(図20)デンドリマ−を用いた場合においても電気穿孔法の場合と同様に、H.pluvialis細胞におけるGFPの発現が確認できた。また、その効率については、電気穿孔法の場合とほぼ同じ程度だった。【0129】4.3.3プロトプラスト細胞におけるデンドリマーを用いた形質転換H.pluvialis細胞には厚い外膜が存在し、これが遺伝子導入の妨げになるのではないかと考え、外膜および細胞壁を取り去った浸透圧感受性のプロトプラスト細胞に関して、デンドリマーを用いて外来遺伝子の導入を行った。(図21)プロトプラストにおいて外来遺伝子を導入した時は、通常細胞において外来遺伝子を導入した時とほぼ変わらない効率であったので、今後、デンドリマーを用いて形質転換を行う場合は、方法を簡略化するために、通常細胞において形質転換を行うことにした。【0130】【表2】【0131】4.4 スクリーニング条件pHyg−e−GFPを導入した形質転換体におけるスクリーニング条件を検討した。また、スクリーニングによって得られた細胞は、後の遺伝的解析に用いた。【0132】4.4.1プレート条件スクリーニングを行うために、プレート条件の検討を行った。(表3)培養温度を25℃、30℃と設定し、ゲルをフィタジェルとアガロースを用い、培地を通常のB培地とB培地を5倍希釈したB/5培地を使用した8種類の条件について検討を行った。その結果、表3に示したように、培養温度25℃で、B/5培地を用いた条件でコロニー生成が確認された。そこで、プレート条件を一番培養に適した、培養温度20℃、培地をB/5培地を用い、ゲルに関してはアガロースよりも透明度が高く、光を透し易いフィタジェルを用いることに決定した。【0133】4.4.2プレートにおける選択圧プレートにおける選択圧の検討をおこなった。その結果、ハイグロマイシンを5μg/mlでプレートに添加した場合が最適条件であることが確認できた。(Data Not Shown)この濃度で、wild−typeは生えず、ハイグロマイシン耐性株が得られた。【0134】4.4.3 液体培地における選択圧液体培地における選択圧の検討を行った。その結果、ハイグロマイシンを5〜10μg/mlで液体培地に添加した場合が最適条件であることが確認できた。(Data Not Shown)この濃度で、wild−typeは生えず、ハイグロマイシン耐性株が得られた。しかし、ハイグロマイシン入りの液体培地でH.pluvialisを培養した場合、シスト化してしまい、あまり増殖しなかった。これは選択圧をかける事により、H.pluvialis細胞がストレスを感じ、ストレス対応でシスト化したためであると思われる。また、30℃でコロニーが形成されなかったのは、H.pluvialis細胞がシスト化し、増殖しない状態だったためだと推測される。【0135】【表3】【0136】4.5 形質転換体における遺伝子的解析形質転換体における遺伝子的解析を行うために、southern blotによる解析を行った。プラスミドpHyg−e−GFPを、デンドリマーと電気穿孔という2種類の方法で導入した細胞を様々な方法で培養し、southern blotに用いた。形質転換後の培養方法を以下に示した。【0137】1.形質転換後1日培養後のサンプル2.プレートにおけるスクーリニング後のコロニーを選択圧なしの液体培地で培養したサンプル3.プレートにおけるスクーリニング後のコロニーを選択圧をかけた液体培地で培養したサンプル【0138】以上のサンプルを用いてsouthern blotを行ったが、バンドは検出できなかった。これは、DNA濃度が低かったためであると推測される。そのために、PCRを用いたsouthern blotを行うことにした。【0139】4.5.1 PCR−Southern blotを用いた遺伝子的解析形質転換体より得られるDNA濃度が低いため、回収したゲノムをPCR増幅し(図22,図23)、レポーター遺伝子を増幅させた後で、Southern−blotによる解析を行った(図24,図25)。用いたサンプルを以下に示す。【0140】1.形質転換後1日培養後のサンプル2.形質転換後1日培養後の細胞をフローサイトメーターによりGFP発現したものをソーティングにより分離したサンプル(Total cell 2×104)3.プレートにおけるスクリーニング後のコロニーを選択圧をかけた液体培地で培養したサンプル4.プレートにおけるスクリーニング後のコロニーを集めたサンプル【0141】これらのサンプルについてPCR−Southern blotを行った結果、形質転換を行った後、時間が経つと導入した遺伝子が抜け落ちてしまうことが確認された。これは、H.pluvialis細胞はジプロイドであるために2本鎖の遺伝子のどちらか一方で組換えが起きたとしても、もう一方のWild−typeの遺伝子の方が優勢であるために、細胞分裂を繰り返すと組換え遺伝子が除去されてしまうものと推測される。また、PCRについては、目的の断片の割合が低い場合には、上手くPCR増幅が行われなかった。これは、他の遺伝子が邪魔をするためにプライマーが鋳型にくっ付きにくくなり、PCRの増幅効率が低下しているためであると推測される。しかし、以上の結果から、H.pluvialis細胞中にpHyg−e−GFPが取り込まれていることが確認でき、それは時間が経つと抜け落ちてしまう事が明らかとなった。【0142】4.6発現タンパクの確認(ウエスタンブロット)プラスミドpHyg−e−GFPを導入したH.pluvialis細胞において発現すると予想されるGFPについて、ウエスタンブロットによる確認を行った。【0143】5.総括単細胞緑藻Haematococcus pluvialisは、アスタキサンチンを生成する微生物であり、細胞内に有するところのカロテノイド色素の殆ど(90%以上)がアスタキサンチンであるため、工業規模におけるアスタキサンチン生産に対し、最も有望な微生物であるとされている。しかし、至適pHが中性付近であり、増殖速度が遅く、栄養源が豊富な条件でしか培養できないため、雑菌による汚染を受け易く工業的に大量生産することが難しい。また、アスタキサンチン生成には、強い光が必要であり多大なコストを要する。また、近年、アメリカ合衆国のハワイ島において、太陽光を利用したH.pluvialisのアスタキサンチン生成が行われるようになったが、生産性が低く、今後予想される需要拡大に伴い、供給が滞ることが予想される。そこで本研究では、H.pluvialisの細胞増殖とアスタキサンチン生産性の向上を目的として、遺伝子導入条件と形質転換の可能性についての検討を行った。【0144】5.1 Fluorescein Isothiocyanate−dextran(FITC−dextran,70kDa)を用いた電気穿孔条件の検討H.pluvialisに外来遺伝子を導入するための電気穿孔条件の検討を行った。その結果、細胞の生存率及び、FITC−dextranの導入効率を考慮し、最適条件を印加電圧50V/2mm gap、パルス回数2回、印加時間50μsecと決定した。また、この条件での電気穿孔後の細胞に関する増殖の検討を行ったが、問題なく増殖することが確認できた。【0145】5.2形質転換体の可能性電気穿孔法及びデンドリマーを用いた外来遺伝子導入を行い、それぞれの形質転換体における発現効率の違いと遺伝子的解析を行った。その結果、フローサイトメーター及びウエスタンブロットによりGFP(Green Fluorescein protein)の発現が確認できた。また、PCR−Southern blotにより外来遺伝子が、H.pluvialis細胞内に取り込まれていることも確認できた。【0146】しかし、選択圧をかけたプレートにおける形質転換体のスクリーニングを行った場合、デンドリマーにより形質転換を行ったものでは、ハイグロマイシン耐性株の得られる効率が、電気穿孔によるものに比べてはるかに悪かった。これについては、デンドリマーとトランスフェクション複合体を形成する遺伝子の濃度を検討する必要があると考えられる。また、スクリーニング後に得られたハイグロマイシン耐性株を液体培地で培養した場合、強い選択圧をかけると、H.pluvialis細胞がシスト化してしまい、増殖しなくなって死滅した。また、弱い選択圧をかけた場合でも、培養していくに従い遺伝子が抜け落ちてしまうために死滅した。これは、H.pluvialisがジプロイドであり、片側の一本鎖だけが組み換わっているだけで、もう一方がwild−typeの配列であるために、このようなことが起こったと推測される。【0147】今後は、安定的な菌株を取得するために、更なる外来遺伝子導入条件の検討を行う必要がある。また、発現効率を向上させるためにプロモーターの選択を行い、有効なベクターの構築が必要である。【0148】図25は、代謝工学的手法を用いた藻類Haematococcus pluvialisの炭素源資化性の改良示す図である。図26は、Materials and methods示す図である。図27は、FACSの原理示す図である。図28は、エレクトロポレーションにおけるVoltageの影響示す図である。図29は、エレクトロポレーションにおけるパルス回数の影響示す図である。図30は、FITC導入時の細胞の様子示す図である。【0149】【0150】【発明の効果】本発明は、抗酸化剤アスタキサンチンを生合成することで工業的にも有用性の高い緑藻ヘマトコッカス(Haematococcus)に外来遺伝子を導入・発現させる場合に有効な方法である。遺伝子を導入できた細胞を多くの細胞の中から選び出す方法として、高感度検出が可能なレポータータンパク質(緑色蛍光タンパク質GFP)を発現する遺伝子、Phleomycin 系抗生物質Zeocin 耐性遺伝子、抗生物質ハイグロマイシン耐性遺伝子を緑藻ヘマトコッカス(Haematococcus)に導入し、安定に発現維持させる。【図面の簡単な説明】【図1】アセチルCoAからβ−カロテンの合成経路を示す図である。【図2】アセチルCoAからβ−カロテンの合成経路を示す図である。【図3】β−カロテンからアスタキサンチンまでの合成経路を示す図である。【図4】電気穿孔法の原理を示す図である。【図5】デンドリマーの原理を示す図である。【図6】Map of pHyg−e−GFPを示す図である。【図7】Map of pSmRS−GFPを示す図である。【図8】フローサイトメーターの検出原理を示す図である。【図9】フローサイトメーターにおける細胞検出原理を示す図である。【図10】Effect of temperature on cell groth in H.pluvislisを示す図である。【図11】Effect of temperature on astaxanthin content in H.pluvislisを示す図である。【図12】Voltageに対する生存率(パルス回数 1回)を示す図である。【図13】通常細胞における印加電圧に対するFITC−dextranの導入効率を示す図である。【図14】通常細胞における印加電圧に対するFITC−dextranの導入効率を示す図である。【図15】プロトプラスト細胞における印加電圧に対するFITC−dextranの導入効率を示す図である。【図16】パルス回数に対する生存率(印加電圧 50V/2mm gap)を示す図である。【図17】通常細胞におけるパルス回数に関するFITC−dextranの導入効率を示す図である。【図18】顕微鏡によるFITC−dextranの導入確認を示す図である。【図19】通常細胞における電気穿孔による形質転換を示す図である。【図20】通常細胞におけるデンドリマーによる形質転換を示す図である。【図21】プロトプラスト細胞におけるデンドリマーによる形質転換を示す図である。【図22】PCRによるpHyg−e−GFP導入確認を示す図である。【図23】PCRによるpHyg−e−GFP導入確認を示す図である。【図24】サザンブロットによるpHyg−e−GFP導入確認を示す図である。【図25】サザンブロットによるpHyg−e−GFP導入確認を示す図である。【図26】代謝工学的手法を用いた藻類Haematococcus pluvialisの炭素源資化性の改良示す図である。【図27】Materials and methods示す図である。【図28】FACSの原理示す図である。【図29】エレクトロポレーションにおけるVoltageの影響示す図である。【図30】エレクトロポレーションにおけるパルス回数の影響示す図である。【図31】FITC導入時の細胞の様子示す図である。 細胞壁の有る状態の緑藻ヘマトコッカス(Haematococcus)にエレクトロポレーション法にて外来遺伝子を導入する方法。 【課題】緑藻類に外来遺伝子を導入する場合の課題を解決する。【解決手段】抗酸化剤アスタキサンチンを生合成することで工業的にも有用性の高い緑藻ヘマトコッカス(Haematococcus)に外来遺伝子を導入・発現させる場合に有効な方法である。遺伝子を導入できた細胞を多くの細胞の中から選び出す方法として、高感度検出が可能なレポータータンパク質(緑色蛍光タンパク質GFP)を発現する遺伝子、Phleomycin 系抗生物質Zeocin 耐性遺伝子、抗生物質ハイグロマイシン耐性遺伝子を緑藻ヘマトコッカス(Haematococcus)に導入し、安定に発現維持させる。【選択図】 図1