タイトル: | 特許公報(B2)_マルチパス3次元映像化レーダ装置 |
出願番号: | 2001131351 |
年次: | 2011 |
IPC分類: | G01N 22/02,G01N 22/00,G01S 13/88,G01S 13/34,G01V 3/12 |
木村 憲明 土井 恭二 JP 4709421 特許公報(B2) 20110325 2001131351 20010427 マルチパス3次元映像化レーダ装置 三井造船株式会社 000005902 村上 友一 100091306 大久保 操 100086922 木村 憲明 土井 恭二 20110622 G01N 22/02 20060101AFI20110602BHJP G01N 22/00 20060101ALI20110602BHJP G01S 13/88 20060101ALI20110602BHJP G01S 13/34 20060101ALN20110602BHJP G01V 3/12 20060101ALN20110602BHJP JPG01N22/02 CG01N22/00 SG01S13/88 GG01S13/34G01V3/12 B G01N22/00-22/04 G01S 7/00- 7/42 G01S13/00-13/95 G01V 1/00-99/00 JSTPlus(JDreamII) 特開平08−062339(JP,A) 特開平10−104339(JP,A) 特開平09−088351(JP,A) 特開2000−278026(JP,A) 3 2002323459 20021108 12 20080313 比嘉 翔一 【0001】【発明の属する技術分野】本発明は、内部欠陥画像表示する装置に係り、特にコンクリート内部の欠陥を画像として迅速に表示できるようにしたマルチパス3次元映像化レーダ装置に関する。【0002】【従来の技術】高速道路、橋梁の床版のコンクリート内部欠陥を舗装面から非接触で検査する方法として地中レーダを適用することが考えられる。この地中レーダを用いた検査装置は送信アンテナ素子と受信アンテナ素子の対を用い、所定の周波数の電波をコンクリート表面から照射し、内部欠陥からの反射波を捕らえることによって欠陥を検出するものとなっている。コンクリート内部欠陥を三次元的に把握するためには上記送・受信アンテナ素子の対を格子点に沿って計測する必要があるがこの作業には多大の時間を要し実用的とは言いがたい。次に考えられる方法として、上記送・受信アンテナ素子の対を複数配列したアレイアンテナを用い、各一対の素子間での電波の送受信によりデータを検出しつつ、これを列方向に配列している各一対の素子間で繰り返し処理し、アレイアンテナをコンクリート表面に沿って移動させながら、コンクリート全面に亘る内部欠陥を検出し、これを画像として表示する。いわゆる一対の送受信アンテナ素子間での電波の送受信をなすことに基礎をおく方式であるシングルパス方式が考えられる。【0003】このようなシングルパス方式のレーダ装置においては、図10(1)で示しているように、異物や空洞などの内部欠陥部(検出対象物)50が平面的で傾斜している場合には、送信アンテナ素子52と受信アンテナ素子54との対では受信できないケースがあり、更に、図11(1)に示しているように、検出対象物56の上方に障害物体58がある場合には、検出対象物56を検知することができない場合が発生してしまう。さらに、例えば、床版の厚さが30cm程度である場合、周波数帯域が0.5〜3GHzの電波を使いたいが、コンクリート中の不均質性や導電性のために電波がよく通過しない場合があるが、このような場合、従来のシングルパス方式では計測結果の映像にノイズが入り、コンクリート中の欠陥を判断することが難しくなる。【0004】【発明が解決しようとする課題】本発明は、従来からの地中レーダあるいはその延長の技術を用いたのでは実現困難なコンクリート内部の高画質で高速の検査に電波の多重経路(マルチパス)方式3次元映像化レーダ装置を提供しようとするものである。【0005】【課題を解決するための手段】上記目的を達成するために、本発明に係るマルチパス3次元映像化レーダ装置は、送信・受信アンテナをインライン配列の複数アンテナ素子から構成しつつ、任意の送信用アンテナ素子と受信用アンテナ素子を選択してデータを採ることができるようにしてコンクリート等の検査対象物の内部欠陥を非接触で短時間に検出することができるレーダ装置とした。【0006】より具体的には、送信アンテナ素子と受信アンテナ素子をそれぞれ複数有するアレイアンテナを用い、このアレイアンテナを平面移動させるとともに、当該アレイアンテナの移動単位毎に複数の送信アンテナ素子を切り替えつつ電波を発射するとともに、個々の送信アンテナ素子からの送信毎に複数の受信アンテナ素子で切替受信させる作業を繰り返し、得られた受信信号から3次元画像を表示することを特徴としている。【0007】 また、本発明に係るマルチパス3次元映像化レーダ装置は、送信アンテナ素子と受信アンテナ素子をそれぞれ複数有するアレイアンテナを有し、任意の送信アンテナ素子の切替手段と、任意の受信アンテナ素子の切替手段とを有し、これら切替手段を任意の個々の送信アンテナ素子から発射された電波の反射波を複数の受信アンテナ素子で順次に受信する処理を前記送信アンテナ素子単位で切替処理する信号を送出する制御手段を有し、受信用マイクロ波増幅器は、送信アンテナ素子と受信アンテナ素子との対毎にゲインを変化させるように設定しておき、送・受信のアンテナ素子対の選択に応じてゲインを切り替える可変ゲイン増幅機能を有し、物体中の欠陥等の検査可能な深度を大きくすることを特徴としている。【0008】 更に、本発明に係るマルチパス3次元映像化レーダ装置は、送信アンテナ素子と受信アンテナ素子をそれぞれ複数有するアレイアンテナを有し、任意の送信アンテナ素子の切替手段と、任意の受信アンテナ素子の切替手段とを有し、これら切替手段を任意の個々の送信アンテナ素子から発射された電波の反射波を複数の受信アンテナ素子で順次に受信する処理を前記送信アンテナ素子単位で切替処理する信号を送出する制御手段を有し、前記受信アンテナ素子での受信信号を入力して得られる像再生方程式から検出対象物の三次元画像データを求める演算手段と、この演算手段による画像データを入力して検出対象物の内部の映像を表示する画像表示手段を有している。【0009】本発明の原理は次のようなものである。図9に示すように、例えば検査対象をコンクリート床版として、その内部検査を行なうために、コンクリート表面(XY平面)の1軸上(Y軸)に送信アンテナ素子と受信アンテナ素子とを配置する。送信アンテナ素子が設定された電波送信点P1(x,y1,z0)から受信アンテナ素子が設定された受信点P2(x,y2,z0)で受信した場合、コンクリート内部の反射点Q(ξ,η,ζ)からの反射波は、電波の減衰がなければ次のように書ける。【数1】【0010】ここでri,ti,w(t)はそれぞれ反射係数、電波の反射点までの往復時間及びレーダパルス波形である。物体中の各反射点までの距離に対応して時間の遅延tiがある。ここで反射係数は、図9の反射点Qの位置座標ξ,η,ζに依存している。このような時系列データがx、y1,y2の自由度に対応した数だけ計測される。【0011】像を再構成するためには図9において、先ず送受信点P1,P2と任意の反射点Qを選択する。この選択には6つの独立変数(x,y1,y2,ξ,η,ζ)に対応した自由度がある。この変数の組一つにつきレーダの時系列データψ(t)が対応している。すなわち、時間の経過にともなう反射点Qから帰ってくる電波の波形が得られる。電波の伝播パス(P1→Q→P2)に対応した計測時系列波形ψ(t)からQ点での反射振幅(電波の強度)を、この伝播に要する所要時間を計算して求め、点Qに割当てる。上記の6つの独立変数につきこの操作を実施すると、検査対象物が存在しない反射点Qについては反射振幅が存在せず、検査対象物が存在する反射点Qについての反射振幅が得られ、各点Qへ割当てられた反射振幅の数値を各点ごとに加算すると像が再構成できる。【0012】【発明の実施の形態】以下に、マルチパス3次元映像化レーダ装置の具体的実施形態を図面を参照して詳細に説明する。実施形態に係るマルチパス3次元映像化レーダはコンクリート床版の内部の欠陥を、マイクロ波を用いて3次元的に映像化するための装置であり、図1に示すように、アレイアンテナ10、高周波回路12、アンテナ素子への給電制御用の論理回路14とスイッチング回路16、モニタを使った計測用計算機からなる計測部18をもったレーダ装置本体20とオフラインの解析処理部22から構成される。【0013】本装置の特徴は、図2(1)、図2(2)のように送信アンテナ素子24と受信アンテナ素子26がそれぞれ一列にn個配列されており、送信用アンテナ素子n個の内の任意の1個と受信用アンテナ素子n個の内の任意の一個の組合せが選択できるようになっていることである。【0014】送信・受信アンテナ素子対としてその全ての組合せを選ぶ処理を行わせるため、前記スイッチング回路16は後述する切替手段に信号を送出し、選択された送信アンテナ素子24によりマイクロ波を送出し、コンクリート内部からの反射波を当該選択された一つの送信アンテナ24による送信中に全ての受信アンテナ素子26が反射波を受信するように受信回路を切り替えるとともに、全ての受信アンテナ素子26による受信作業が終了した後に、送信アンテナ24n(n=1,2,3……)を隣接する送信アンテナ24n+1に切り替えるようにしている。これらが一体で図1に矢印で示した列に直行するトラバース方向25へ移動することで計測すべき領域の上平面をカバーする。【0015】したがって、図3に詳細を示したように、レーダ装置本体20の進行方向(図1のトラバース方向25)のトリガ1パルスにつき、全ての送信アンテナ24を順次切り替える信号が送信アンテナ素子切替器に出力され、各送信アンテナ素子切替信号の1パルスにつき、全ての受信アンテナ素子26を順次切り替える信号が受信アンテナ切替器に出力される。【0016】レーダ信号の送信のやり方として以下の2つの方法がある。(1)各送信・受信アンテナ素子の対において送信信号の周波数100MHz〜5GHz帯域で掃引し受信信号のフーリエ変換で時間領域の波形に変換する、いわゆるFMCW方式である。(2)上記帯域のパルスを送信・受信するパルス方式で、これで深さ方向の情報を得ることにより3次元の画像に必要な情報が得られる。【0017】図3は、前者(1)のFMCW方式を示しており、レーダの動作を高速化するために周波数のステップ状の掃引の各ステップにおいて受信アンテナ素子26の切替を行うようにしている。これは周波数の切替よりアンテナ素子の切替の方が高速動作に適しているからである。【0018】図4に示すように、上述したマルチパス(多重経路)方式では、実は3次元画像に必要な情報より1次元分余分な情報が得られ(アレイアンテナ10の進行方向x,送信アンテナ素子24の配列方向y1,受信アンテナ素子26の配列方向y2,深さ方向zの4次元であるので)、これが画像のS/N(信号/ノイズ)の改善に大きく寄与する。媒体中の任意の一点を複数の経路のマイクロ波が通るので媒体中の一部に散乱しやすい所があってその経路を通るデータが欠損しても画像を再構築するための情報は十分なので画像が劣化しない。図4(2)は従来のシングルパス(単一経路)方式を示しており、同図(1)は実施形態のマルチパス(多重経路)方式を示している。前者は単一の送信アンテナ素子24から出力された電波は対を構成している受信アンテナ素子26により受信されるだけである。それ故、媒体中の遮蔽物60により受信できず、このために像を再生するときにフォーカスさせることができなくなって再生像がボケてしまうのである。これに対して、本実施形態の場合には、任意の送受信対を用いるため、1点に多くのデータが集まり、大幅なS/N比向上を図ることができる。また、アンテナの前に電波の透過し難い層があっても、多重経路を通じて受信できるために画像が崩れることを有効に防止することができ、鮮明な画像表示ができるのである。【0019】実際に内部欠陥画像表示装置をFMCW方式のレーダシステムで構築すると図5のようなブロックで示せる。アレイアンテナ10、高周波回路(マイクロ波回路)12、制御用論理回路(システム制御回路)14、スイッチング回路(アンテナ切替回路)16、及び解析処理部(信号・画像処理器)22に大きく分かれる。全体のタイミングはシステム制御回路14により制御される。【0020】アレイアンテナ10は、前述したように、送信アンテナ素子24と受信アンテナ素子26がそれぞれ一列に配列し、あるいは送信アンテナ素子24と受信アンテナ素子26を交互に配列して構成される。送信アンテナ素子24の列には送信アンテナ切替器(スイッチング回路)16Tが接続され、同様に受信アンテナ素子26には受信アンテナ切替器(スイッチング回路)16Rが接続されている。この切替器16T,16RはSPNT(Single Port in N Transfer)切替器の機能を持ち、制御用論理回路(システム制御回路)14によるスイッチ切替信号により、電流駆動用パワーFETおよびピンダイオードを介してアンテナ素子24,26を電子スキャンするようになっている。制御用論理回路(システム制御回路)14の信号制御回路部分の役割は、当該スイッチ制御、信号をA/D変換するタイミングの制御を主とするものである。特に、この実施形態では、図3に示しているように、レーダ装置本体20の走査方向である進行方向(図1のトラバース方向25)のトリガ1パルスにつき、マイクロ波の周波数がステップ状に掃引し、周波数の各ステップにおいて全ての送信アンテナ24を順次切り替える信号が送信アンテナ切替器16Tに出力され、各送信アンテナ切替信号の1パルスにつき、全ての受信アンテナ素子26を順次切り替える信号が受信アンテナ切替器16Rに出力される。なお、トリガパルスは、アレイアンテナ10を走査方向に所定距離移動させるごとにエンコーダパルスとして出力される。マイクロ波切替スイッチSPNTのひとつの実現例を図6に示し、動作フローを図7に示す。【0021】高周波回路(マイクロ波回路)12は送信回路部と受信回路部とから構成されている。送信回路部は、発振器28、方向性結合器30、増幅器(RFアンプ)32を有しており、前記送信アンテナ切替器16Tにより切り替えられて選択された送信アンテナ素子24から送信電波を出力させる。受信回路部は、各送信アンテナ切替信号の1パルスにつき、前記受信アンテナ切替器16Rで全ての受信アンテナ素子26に順次切り替えられる毎に入力される受信信号を取り込んで処理するもので、増幅器(可変ゲインRFアンプ)34、ミキサ36、フィルタ(IFフィルタ/アンプ)38を備えており、フィルタリングされた受信信号を制御用論理回路(システム制御回路)14に出力するようにしている。制御用論理回路(システム制御回路)14では各トリガ信号、送信周波数信号とともに、計測された受信信号を解析処理部22にデータ転送を行なう。【0022】高周波回路にある可変ゲインRFアンプ(増幅器34)の機能について述べる。レーダには図8に示すように送信アンテナ素子24から媒体中を通らずに直接受信アンテナ素子26へ回り込む信号(直接波)があり、その強度は送信・受信アンテナ素子間の距離に依存する。送信アンテナ素子24と受信アンテナ素子26間の距離に応じて直接波の信号強度が変化する。これを考慮して増幅器34のゲインを設定しておき、送・受信のアンテナ素子選択に応じて切り替えると距離の遠い対象物(欠陥など)からの微弱な反射信号を最適の感度で計測できる。例えば送信・受信間が離れているアンテナ素子対の場合には増幅器34の感度を上げておき、逆に近い場合には増幅器34の感度を下げておく。アンテナ素子24、26の切替信号に同期して予め記憶しておいた(例えばROMに書き込んでおく)データを読み出し、これをD/A変換して電圧制御型RFアンプ(増幅器34)へ送るとマイクロ波の増幅率をアンテナ素子対毎に制御できる。この機能は距離の離れた標的62を検知するのに適している。【0023】解析処理部(信号・画像処理器)22には以下に示すようなセンサ画像処理ソフトウェアが搭載されている。図9に示したように、コンクリート表面(XY表面)の1軸上(Y軸)に送信アンテナ素子と受信アンテナ素子とを配置する。送信アンテナ素子が設定された電波送信点P1(x,y1,z0)から受信アンテナ素子が設定された受信点P2(x,y2,z0)で受信した場合、コンクリート内部の反射点Q(ξ,η,ζ)からの反射波は、電波の減衰がなければ次のように書ける。【数2】【0024】ここでri,ti,w(t)はそれぞれ反射係数、電波の反射点までの往復時間及びレーダパルス波形である。物体中の各反射点までの距離に対応して時間の遅延tiがある。像を再構成するためには図9において、先ずP1,P2とQを選択する。この選択には6つの独立変数(x,y1,y2,ξ,η,ζ)に対応した自由度がある。この変数の組一つにつきレーダの時系列データψ(t)が対応している。電波の伝播パス(P1→Q→P2)に対応した計測時系列波形ψ(t)からQ点での反射振幅を、この伝播に要する所要時間を計算して求め、点Qに割当てる。上記の6つの独立変数につきこの操作を実施し、各点へ割当てられた数値を像空間(映像化対象)の各点ごとに加算すると像が再構成できる。具体的には次の式が用いられる。【0025】任意の送信アンテナ素子24の位置P1を(x,y1,z)、任意の受信アンテナ素子26の位置P2を(x,y2,z)、媒体中の任意の点Qを(ξ,η,ζ)とするとき、P1とQとの距離r1、P2とQとの距離r2は、【数3】【数4】【数5】P1→Q→P2の伝播時間tP1→Q→P2ここでCはマイクロ波の物質中の速度であるこのとき点Qへ割当てられる値【数6】となる。3次元画像を得るにはx,y1,y2に関して緩和し、【数7】3次元映像化関数を求めればよい。【0026】すなわち、任意の送信点P1と任意の受信点P2と任意の反射点Qとの組を順次選択し、選択した組について時間の経過にともなう反射点Qから帰ってくる電波の波形を求め、電波の伝播パス(P1→Q→P2)に対応した計測時系列波形からQ点での反射振幅(電波の強度)を、この伝播に要する所要時間を計算して求めて点Qに割当てることにより、検査対象物が存在しない反射点Qについては反射振幅が存在せず、検査対象物が存在する反射点Qについての反射振幅が得られる。そこで、この操作を上記の6つの独立変数x,y1,y2,ξ,η,ζにつき順次実施し、各点Qへ割当てられた反射振幅の数値を各点ごとに加算すると像が再構成できる。従って、本実施形態によりコンクリート床版などの構造物の内部欠陥を高速で3次元画像表示することができるのである。【0027】特に、実施形態にかかる方式はマルチパス方式を採用しているために、コンクリート床版などの内部で検知対象物(欠陥)が平面的で傾斜しているような場合でも図10(2)に示しているように受信アンテナ素子26に対する全てのパスのデータが受信されるため、複数の楕円の交点として物体位置を特定することができ、検出に不具合を生じない。また、検知対象物(欠陥)の上位に検知障害物が存在していても、図11(2)に示しているように、この障害物を避けたパスにより受信検知することができ、これにより確実な欠陥検知が可能となっている。【0028】【発明の効果】本発明に係るマルチパス3次元映像化レーダ装置によれば、以下のことが達成できる。a.多重経路方式3次元映像化レーダにおいてはコンクリート中の欠陥等のレーダ標的に至る電波の経路が複数あり、一部の経路において石やジャンカ層に当り散乱しても他の経路を通る電波により映像データが捕らえられ、常に明瞭な映像を得ることができ、S/N比の飛躍的向上が図られる。b.媒体内部の3次元画像を得ることができ、これを用いることで従来の2次元的な場合に比べてより認識レベルが高くできる。したがって、コンクリート中の欠陥等の発見に有力な手段を提供することができる。c.同時検査幅が大きいので検査速度が高速となりかつ検査結果画像として3次元画像を得ることができ広大な面積の橋梁や高速道路の床版の検査を実現可能なものにする。【図面の簡単な説明】【図1】実施形態に係るマルチパス3次元映像化レーダ装置の概略構成を示す説明図である。【図2】実施の形態に係るアレイアンテナの配列形態図である。【図3】実施の形態に係る多重経路アンテナにおけるアンテナ素子切替タイミングの説明図である。【図4】本実施形態に係る多重経路方式と従来の単一経路方式の比較説明図である。【図5】実施の形態に係る多重経路方式の地中レーダの回路ブロック図である。【図6】本実施形態に係る装置のマイクロ波切替スイッチの構成図である。【図7】アンテナ素子切替スイッチ動作フローチャートである。【図8】固定ゲイン増幅器と経路依存可変ゲイン増幅器の相違による反射波の説明図である。【図9】アレイアンテナを用いてコンクリート中の欠陥を検出する方法の説明図である。【図10】本実施形態の欠陥検出状態と従来の欠陥検出状態の比較図である。【図11】障害物がある場合の本実施形態の欠陥検出状態と、従来の欠陥検出状態の比較図である。【符号の説明】10………アレイアンテナ、12………高周波回路(マイクロ波回路)、14………制御用論理回路(システム制御回路)、16………スイッチング回路(アンテナ切替回路)、16T………送信アンテナ切替器、16R………受信アンテナ切替器、18………計測部、20………レーダ装置本体、22………解析処理部(信号・画像処理器)、24………送信アンテナ素子、26………受信アンテナ素子、28………発振器、30………方向性結合器、32………増幅器、34………増幅器、36………ミキサ、38………フィルタ。 送信アンテナ素子と受信アンテナ素子をそれぞれ複数有するアレイアンテナを用いて、このアレイアンテナを平面移動させるとともに、当該アレイアンテナの移動単位毎に複数の送信アンテナ素子を切り替えつつ電波を発射するとともに、個々の送信アンテナ素子からの送信毎に複数の受信アンテナ素子で切替受信させる作業を繰り返し、得られた受信信号から物体内部を3次元画像表示することを特徴とするマルチパス3次元映像化レーダ装置。 送信アンテナ素子と受信アンテナ素子をそれぞれ複数有するアレイアンテナを有し、任意の送信アンテナ素子の切替手段と、任意の受信アンテナ素子の切替手段とを有し、これら切替手段を任意の個々の送信アンテナ素子から発射された電波の反射波を複数の受信アンテナ素子で順次に受信する処理を前記送信アンテナ素子単位で切替処理する信号を送出する制御手段を有し、受信用マイクロ波増幅器は、送信アンテナ素子と受信アンテナ素子との対毎にゲインを変化させるように設定しておき、送・受信のアンテナ素子対の選択に応じてゲインを切り替える可変ゲイン増幅機能を有し、物体中の欠陥等の検査可能な深度を大きくすることを特徴とするマルチパス3次元映像化レーダ装置。 送信アンテナと受信アンテナをそれぞれ複数有するアレイアンテナを有し、任意の送信アンテナ素子の切替手段と、任意の受信アンテナ素子の切替手段とを有し、これら切替手段を任意の個々の送信アンテナ素子から発射された電波の反射波を複数の受信アンテナ素子で順次に受信する処理を前記送信アンテナ素子単位で切替処理する信号を送出する制御手段を有し、前記受信アンテナ素子での受信信号を入力して得られる像再生方程式から検出対象物の三次元画像データを求める演算手段と、この演算手段による画像データを入力して検出対象物の内部の映像を表示する画像表示手段を備えたことを特徴とするマルチパス3次元映像化レーダ装置。