生命科学関連特許情報

タイトル:特許公報(B2)_アンモニア耐性L(+)−乳酸産生能菌およびL(+)−乳酸の生産方法
出願番号:1998209713
年次:2008
IPC分類:C12P 7/56,C12N 1/14,C12R 1/845


特許情報キャッシュ

岡部 満康 JP 4132253 特許公報(B2) 20080606 1998209713 19980724 アンモニア耐性L(+)−乳酸産生能菌およびL(+)−乳酸の生産方法 株式会社武蔵野化学研究所 390022301 八田 幹雄 100072349 野上 敦 100102912 奈良 泰男 100110995 齋藤 悦子 100111464 岡部 満康 20080813 C12P 7/56 20060101AFI20080724BHJP C12N 1/14 20060101ALI20080724BHJP C12R 1/845 20060101ALN20080724BHJP JPC12P7/56C12N1/14 AC12P7/56C12R1:845C12N1/14 AC12R1:845 C12P 7/00-7/66 BIOSIS/WPI(DIALOG) JSTPlus/JST7580(JDreamII) G-Search 特開平06−253871(JP,A) J.Ferment.Bioeng.,Vol.84,No.3(1997)p.249-253 5 FERM BP-6777 FERM BP-6776 2000037196 20000208 16 20050131 三原 健治 【0001】【発明の属する技術分野】本発明は、リゾプス属に属するアンモニア耐性を有するL(+)−乳酸産生菌および当該菌を用いてL(+)−乳酸を生産する方法に関し、より詳細には、親株であるリゾプス・エスピーMK96(Rhizopus sp.MK96)をニトソログアニジンで変異して得られたアンモニア耐性を有するL(+)−乳酸産生菌、すなわちリゾプス・エスピーMK96−1156自体、及びこれを用いて好気的な条件においてアンモニアを中和剤として培養液のpHを調整し、高収率でL(+)−乳酸を製造する方法に関する。【0002】【従来技術】乳酸は、食品添加物として清酒、清涼飲料、漬物、醤油、製パン、ビールなどの製造に使用され、また、皮革、繊維、プラスチックなどの工業用に利用される有用な化合物である。【0003】現在、発酵法による乳酸の生産には、分裂菌類に含まれるラクトバシラス(Lactobacillus)、ラクトコッカス(Lactococcus)などのいわゆる乳酸菌と呼ばれる細菌を嫌気的に培養する乳酸発酵が一般的に行われている。乳酸菌培養は、糖、澱粉などを主原料として、これに酵母エキスなどの栄養源を副原料として加えた培地が使用されている。これらラクトバシラス(Lactobacillus)、ラクトコッカス(Lactococcus)などのバクテリアによる乳酸発酵は簡単で、しかも乳酸が高収率で得られるという利点があるが、一般に酵母エキスなどの副原料は高価であるため、得られるL(+)−乳酸も高価となる。また、これらのバクテリアは1μm以下程度の大きさのため培地との分離が容易でなく、培養処理の作業性が悪い。【0004】一方、リゾプス属などの糸状菌を用いて炭酸カルシウムを含む培養液中で、好気的培養により乳酸を生産する方法がある。糖からの乳酸の収率は70〜80%程度であるが、グルコースなどの単糖を炭素源とできかつ培地成分として糖以外に少量の無機塩のみの要求ですむことから、発酵後の培地中の不純物を比較的少なくできる。例えば、クリストコフ等(L.Kristofikova, M.Rosenberg, A.Vlnove, J.Sajbidor and M.Certik Folia Microbiol, 36(5), 451-455 (1991))は、リゾプス・アリズスCCM8109(Rhizopus arrhizus CCM8109)から、グルコースを炭素源として79g/リットルの乳酸を生産している。【0005】また、リゾプス・オリゼNRRL395(Rhizopus oryzae NRRL395)の菌体を用いて乳酸を生産する方法もある。例えば、ヤング等により(C. W. Yang, Zhongjing Lu and Geroge T. Tsaso; Applid Biochemistry and Biotechnology vol 51/52 p57-71, 1995)、当該菌体を好気的条件下で培養し、炭酸カルシウムを添加した培養液で収率78%で乳酸を産生する方法が開示されている。【0006】また上記リゾプス属の菌体は集合体(ペレット)となりやすく、簡単に培地と分離できるため発酵後の培地から乳酸と当該ペレットとの分離精製が容易である。こうしたペレットの利点を利用したものとして、リゾプス・オリゼNRRL395(Rhizopus oryzae NRRL395)を用いて、キシロースを炭素源とする液体培養で菌体ペレットを形成させ、このペレットを用いてグルコースから乳酸を生産させる方法がある。例えば、ソッコル等(C.R.Soccol, B.Marin, M.Raimbault; Appl Microbiol Biotechnol 41, 286-290 (1991))は、得られた菌体ペレットを中和剤たる炭酸カルシウムを含有する培養液中で好気的に発酵培養し約75%の収率で乳酸を得ている。この方法によれば、このペレットを炭酸カルシウムを含む培養液中で培養し、炭素源たるグルコースが消費される毎に新たな培養液で培養することにより、連続的に乳酸が生産されている。【0007】この様に、リゾプス属の菌株を好気的に培養しグルコースやデンプンを原料としてL(+)−乳酸を生産する場合、乳酸菌を用いる場合と比較して種々の利点がある。【0008】【発明が解決しようとする課題】しかしながら、リゾプスによる好気的培養によるL(+)−乳酸の産生は一般に収率が低く、発酵に7〜10日を要するものが多く乳酸生産に長持間を要する。このため乳酸菌を用いた嫌気的発酵に比較して工業的実用性に欠ける。【0009】また、上記ソッコル等により、リゾプスを再使用した連続培養も報告されているが、かかる菌株を使用した場合は、3回目以降で乳酸産生の減退が大きくなり、これを防ぐため培養液に窒素源として尿素を添加する必要がある。【0010】また、一般に乳酸産生菌によるL(+)−乳酸の生産方法では、生産されたL(+)−乳酸による生成物阻害を抑制しかつ培養液の酸性度を中和すべく、炭酸カルシウムや水酸化ナトリウムを中和剤としてL(+)−乳酸を中和する必要がある。高収率で乳酸を得る場合、現在知られているリゾプス属による乳酸発酵は殆どが炭酸カルシウムを中和剤として用いるものであり、生成する乳酸カルシウムから乳酸を分離精製するには、硫酸を添加して硫酸カルシウムを沈澱分離する方法を用いる以外になく、大量の硫酸カルシウムを副生するため工業的に問題がある。かかる場合、アンモニアを中和剤に用いて乳酸アンモニウムを得る場合には、アンモニアによる菌体活性阻害により、収率および生産性の面でも不十分なものとなりやすい。更に、上記ソッコル等は、生成する酸の中和剤として炭酸カルシウム等を使用せず、ポリ4−ビニルピロリドン(PVP)樹脂でL(+)−乳酸を吸着分離しているが、細胞が損傷を受けるため生産量が低下するという問題点を指摘している。【0011】また、乳酸は、多糖を含む糖類から菌体内の諸酵素により産生されるが、使用する菌株自体の栄養要求性が複雑であれば、培養液中に各種の成分を配合しなければならず、かかる培養液から乳酸産生菌株が産生した乳酸を単離することは困難であり、収率よく高純度の乳酸を製造することは容易でない。また、培養条件によっては副生物が生じるため、乳酸の精製段階を簡便にするには、副生物の発生が少ない培養条件を選択する必要がある。一方、菌体を効率よく使用するためには乳酸産生菌体を再使用することが好ましいが、一般に菌株を再使用すると栄養要求性を十分に満たすことが困難で、乳酸産生能が低下する場合が多い。このため、再使用に強い菌株を選択する必要がある。【0013】 本発明は上記課題に鑑み、リゾプス・エスピーMK96−1156(Rhizopus sp.MK96ー1156)(受託番号:FERM BP−6777)菌株を提供するものである。【0014】 また、前記菌株を好気的に培養して、培養液のpHの調整がアンモニアの添加によることを特徴とするL(+)−乳酸を生産する方法を提供するものである。【0016】また、前記好気的培養が、空気または酸素の導入により連続的に、新たな培養液毎に回分式に、または新たな培養液を供給し半回分式に培養することを特徴とする前記のL(+)−乳酸を生産する方法を提供するものである。【0017】また、前記好気的培養が回分式に行われる場合において、前培養することなく菌体を再使用し回分式に培養することを特徴とする前記L(+)−乳酸を生産する方法を提供するものである。【0018】また、前記好気的培養が、通気撹拌型バイオリアクターまたは気泡塔型バイオリアクターにより行われることを特徴とする前記L(+)−乳酸を生産する方法を提供するものである。【0020】【発明の実施の形態】本発明では、リゾプスに属しアンモニア耐性を有するL(+)−乳酸生産菌であればいずれも使用できる。リゾプスに属する乳酸発酵能を有する微生物としては、例えば、リゾプス・アリズス(Rhizopus arrhizus)、リゾプス・デレマ(Rhizopus delemar)、リゾプス・ジャバニクス(Rhizopus javanicus)、クロネ(Rhizopus nigricans)、リゾプス・オリゼ(Rhizopus oryzae)、クモノスカビ(リゾプス)(Rhizopus stolonifer)等が挙げられ、これらの中でもリゾプス・オリゼ(Rhizopus oryzae)やリゾプス・アリズス(Rhizopus arrhizus)が好ましい。L(+)−乳酸産生能が高いからである。これらのリゾプス属に属する乳酸発酵能を有する菌類は、ペレット状、塊状で培養できるからである。【0021】本発明で使用するL(+)−乳酸生産菌は、更にアンモニア耐性を有することが必要である。この様な菌株として、本発明者らによって新たに土壌から分離された親株リゾプス・エスピーMK96(Rhizopus sp.MK96)を以下に述べる方法で突然変異して得られた変異株リゾプス・エスピーMK96−1156(Rhizopus sp.MK96−1156)菌株がある。即ち、本発明者は上記目的を解決すべく、アンモニア耐性を有するL(+)−乳酸産生菌の取得を目的として新たに自然界からL(+)−乳酸を生産するリゾプス属の菌体を分離し、変異処理によりアンモニア耐性を付与し、高いL(+)−乳酸産生能を示す菌株を得るに至った。これによりアンモニアを中和剤として用いた場合にも、収率の低下を招くことなくL(+)−乳酸を産生させることができるからである。【0022】(1) 親株の1次スクリーニング水田土壌から採取した試料1gを5mlの滅菌蒸留水に懸濁し、試料原液を調製した。これを適当に希釈した最終希釈液を0.1mlづつコンラージ棒を用いて、L(+)−乳酸を含む表1に示すポテト寒天培地の分離用寒天培地に塗布した。接種後24℃の恒温槽中で培養し、3日目位から発達してくるコロニーを白金耳を用いて釣り上げ表1に示す組成の斜面培養寒天培地に移植した。土壌試料1点について約50株、土壌試料100点について実施し、合計約3500のカビと推定される菌株を分離した。これらの菌株のうち、斜面培養寒天培地での菌の形態がリゾプス属に近いと思われる菌株を800本選択し、一次スクリーニング通過株とした。なお表1に示す各寒天培地の組成は、蒸留水1リットル中のg数を示す。【0023】【表1】【0024】(2) 試験管振盪培養による2次スクリーニング10mlの表2に示す前培養培地に、前記斜面培養寒天培地上の胞子を1白金耳接種し、試験管振盪培養装置で2日間培養した。この前培養培地1mlを表2に示す生産培地10mlを入れた試験管に接種し、前培養と同様の方法で1日間振盪培養した。その後、炭酸カルシウムを1g添加し、更に2日間振盪培養した。培養上澄についてバーカーサマーソン法でL(+)−乳酸を比色定量した。1次スクリーニング通過株800株全てについてL(+)−乳酸蓄積量を調べたところ、静岡県藤枝市付近の水田から採取した土壌サンプルから得た菌株がその中で最も高いL(+)−乳酸蓄積量を示すことが判明し、本菌株をリゾプス・エスピーMK96(Rhizopus sp.MK96)と命名した。【0025】【表2】【0026】(3) リゾプス・エスピーMK96の菌学的特徴本菌株の菌学的性質を以下に述べる。【0027】(a)形態的特徴;ポテト寒天培地で24℃で生育したリゾプス・エスピーMK96株の形態学的特徴は、以下の通りである。【0028】イ)胞子(sporangium)に中軸がある。【0029】ロ)胞子嚢のみを形成し、球形である。【0030】ハ)胞子嚢柄(sporangiophore)は蒼白色である。【0031】ニ)仮根(Rhizoid)と走出根(stolon)がある。【0032】ホ)胞子嚢柄は仮根の基部から生じている。【0033】ヘ)胞子嚢も菌糸層もよく発達している。【0034】(b)生理学的特徴;表3に示すツアペック(Czapek)培地を用いて本菌の生育に与える培地温度並びに初発pHの影響を調べた。結果を表4〜7に示す。【0035】【表3】【0036】【表4】【0037】【表5】【0038】【表6】【0039】【表7】【0040】(4)同定以上の形態学的ならびに生理学的特徴から本菌(リゾプス・エスピーMK96株)の菌学的同定を試みた。チシャ等の分類基準(Zycha,H.,Siepmann and G.Limmemann:Mucorales,lehre(1969))に従い、本菌の胞子嚢形態が球形または扁球形であること、多胞子からなること、中軸があることから、本菌は明らかにムコラッセ(Mukoraceae)(ケカビ)科の接合菌であるとした。またヘセルチン(Hesseltine)およびエリス(Ellis)らの提案したムコラッセ(Mucoraceae)目の検索に従い、本菌の胞子嚢がアポフィーゼを備えていること、胞子嚢柄は、葡萄菌糸より生じ、仮根を伴い、かつ菌糸の仮根形成部より直立していることから本菌は、リゾプス(Rhizopus)(クモノスカビ)に属するものとした。【0041】リゾプス属は現在15種報告されているが、イヌイ等(Inui,T.,Takeda,Y.and Iizuka,H.,Taxonomical studies on genus Rhizopus, The Journal of General and Applied Microbiology, 11,1-121(1965))が提案した検索表に従い、本菌に近縁していると思われるリゾプス・オリゼ・ウェント・アンド・プリンセン・ゲーリングス(Rhizopus oryzae Went and Prinsen-Geerlings)と対比しながら本菌の詳細な同定を行った。【0042】本菌は、形態学的特徴およびツアペック培地での生理学的特徴などから判断して、リゾプス・オリゼ・ウェント・アンド・プリンセン・ゲーリングス株に極めて近縁の菌株と思われた。しかし、表8で示したごとくL(+)−乳酸の生産量がリゾプス・オリゼ(Rhizopus oryzae)のタイプカルチャーに比較して4倍近く高い。この結果、本菌は新規な菌株であるとみなし、リゾプス・エスピーMK96(Rhizopus sp.MK96)株と命名した。リゾプス・エスピーMK96(Rhizopus sp.MK96)は、以下に述べる有用な変異株リゾプス・エスピーMK96−1156菌株の親株として有用である。なお、この菌株は、工業技術院微生物工業技術研究所に微工研菌寄託第902号(FERM P−16876)として寄託され、該寄託は、ブタペスト条約に基づく寄託に切り換えられて受託番号FERM BP−6776として同所に保管されている。【0043】【表8】【0044】(5) リゾプス・エスピーMK96菌株の突然変異処理によるアンモニア耐性を有するL(+)−乳酸産生菌の誘導ニトロソグアニジン(NTG)変異;上記リゾプス・エスピーMK96菌株を、表1で示した組成を有する斜面培養寒天培地で24℃、10日間培養した。斜面に滅菌水5mlを添加しよく胞子をかきとった後、この胞子懸濁水をガーゼで包んだ綿の層を通過させ、胞子編を除いた液を遠心分離して胞子のみを集めた。これをトリス−マレート懸濁液に懸濁し、NTGを1mg/mlとなるように添加した後、胞子懸濁液を2.5時間、150分間、24℃で振盪した。その後、遠心分離した胞子に滅菌水5mlを加えて再び遠心分離を行った。この操作を2回行い、胞子を完全に洗浄した後、L(+)−乳酸アンモニウムの濃度勾配が0〜100g/lとなるように作成した寒天培地(ペトリ皿)に塗布して24℃、3日間培養を行った(濃度勾配プレート培養法、Science,116,46-48(1952))。次いで、L(+)−乳酸アンモニウム濃度が比較的高い部分に生育してきたコロニーを釣菌して24℃で10日間培養した。【0045】(6) L(+)−乳酸高生産菌の選別上記(5)で得た変異株を表2で示した生産培地10mlを含む試験管に1白金耳接種して、試験管振盪培養装置で35℃で1日間培養後、滅菌した炭酸カルシウム1gを添加し、更に2日間培養した。培養上澄中のL(+)−乳酸をバーカーエマーソン法で比色定量した。菌株中フラスコ培養しL(+)−乳酸の生産量が比較的高い菌株を10株選別し、後述する実施例1で示したジャーファーメンターでアンモニアで中和する方法で比較培養し、その中で最もL(+)−乳酸生産量が高かった菌株をリゾプス・エスピーMK96−1156(Rhizopus sp.MK96-1156)とした。この菌株は、工業技術院微生物工業技術研究所に微工研菌寄託第903号(FERM P−16877)として寄託され、該寄託は、ブタペスト条約に基づく寄託に切り換えられて受託番号FERM BP−6777として同所に保管されている。【0046】(7) L(+)−乳酸の生産方法本発明においてはアンモニア耐性を有するL(+)−乳酸産生能菌を用いて好気的培養によりL(+)−乳酸を産生させる。本発明で分離されたリゾプス・エスピーMK96−1156菌株の胞子または菌糸を用いて、栄養源含有培地に接種して好気的に増殖させることによってL(+)−乳酸を生産することができる。【0047】本発明においてはアンモニア耐性を有するL(+)−乳酸産生能菌を分離育成し、これを通気撹拌型もしくは気泡塔型バイオリアクターで好気的に回分、半回分または連続培養することにより、さらには、菌体の再利用を伴う反復回分培養を行うことによりL(+)−乳酸を収率よく、しかも効率的に生産することができる。以下、L(+)−乳酸の製造方法を説明する。【0048】アンモニア耐性を有するL(+)−乳酸産生能菌の栄養源としては、通常使用される例えば炭水化物、窒素源、無機物などの同化できる栄養源を使用できる。例えば炭素源としては、コーンスターチ、コーンミール、デンプン、デキストリン、麦芽、ブドウ糖、グリセリン、シュクロース、糖蜜等が単独で又は混合物として用いられる。窒素源としては、硫酸アンモニウム、硝酸ナトリウム、大豆粉、コーンスティープリカー、グルテンミール、肉エキス、脂肉骨粉、酵母エキス、乾燥酵母、綿実粉、ペプトン、小麦胚芽、魚粉、ミートミール、脱脂米糠、脱脂肉骨粉、麦芽エキス、コーングルテンミール等の無機又は有機の窒素源を単独で又は混合物として使用できる。無機塩としては、炭酸カルシウム、塩化ナトリウム、塩化カリウム、硫酸マグネシウム、臭化ナトリウム、ホウ酸ナトリウム又はリン酸第一カリウム、硫酸亜鉛、硫酸マグネシウム等の各種無機塩が単独でまたは混合物として使用できる。また、必要に応じて、鉄、マンガン、亜鉛、コバルト、モリブデン酸等の重金属を微量添加することもできる。その他L(+)−乳酸を生産するものであれば、いずれの栄養源も使用でき公知のカビの培養材料いずれも使用できる。また、加熱滅菌時および培養中における発泡を押さえるため、大豆油、亜麻仁油などの植物油、オクタデカノール等の高級アルコール類、各種シリコン等の消泡剤を添加してもよい。上記のごとき栄養源の配合割合は、特に制限されるものではなく、広範囲に亘って変えることができ、使用する条件によって最適の栄養源の組成および配合割合は、簡単な小規模実験によって容易に決定することができる。【0049】また、栄養培地は、培養に先立ち滅菌後のpHが5〜7前後になるように水酸化ナトリウムの水溶液、アンモニア水またはアンモニアガスを用いてpHを調整することが好ましい。【0050】また、本発明に係るリゾプス属に属するのアンモニア耐性を有するL(+)−乳酸産生菌の胞子の植菌の方法としては、特に限定されるものでなく、通常、上記胞子を以下に液体中に懸濁し、この懸濁液体をそのまま発酵用の液体培地に接種するなどして植菌する方法などを用いることができる。【0051】上記胞子の懸濁方法としては、例えば、寒天斜面培地上に生育し、該胞子を形成しているリゾプス属のアンモニア耐性を有するL(+)−乳酸生成菌の菌体に液体を加えてミキシングする方法などを用いることができる。なお上記液体としては、通常、無菌水が用いられるが、さらに生化学領域で使用されるものとして、例えば、トゥイーン80などのトゥイーン系界面活性剤、トリトンXシリーズなどのトリトン系界面活性剤、アシルソルビタンなどを少量(例えば、液体全体に対し、0.01重量%程度)添加した無菌水を用いることもできる。これにより効果的に胞子を無菌水中に分散することができ均質な懸濁液を得ることができるものである。【0052】かかる栄養培地での本菌株の培養は原則的には、一般のカビによるL(+)−乳酸の製造において通常使用されている液体培養に準じて行うことができる。液体培養の場合は、静置培養、撹拌培養、振盪培養又は通気培養などのいずれを実施してもよい。本発明では、特に振盪培養、深部通気撹拌培養が好ましい。培養においては、好気的な培養が好ましく、酸素または純酸素の導入量は、0.05〜3.0vvmであることが好ましく、より好ましくは0.2〜1.0vvmである。この様な条件を満たすものとして培養装置に特に制限はないが、空気または純酸素あるは両者の混合気体を通気しながら撹拌型リアクターあるいは気泡塔型リアクターのいずれかで培養することが好ましい。特に、気泡塔型リアクターは、菌糸が撹拌翼にからみつくことがなく、菌糸自体の破損を防止できる点でも優れている。【0053】更に、培養操作としては、空気または酸素の導入により連続的に、新たな培養液毎に回分式に、または新たな培養液を供給し半回分式に培養してもよい。更に、回分式に行われる場合に菌体を再使用することもできる。【0054】培養温度は、本菌株の増殖が実質的に阻害されずL(+)−乳酸を生産しうる範囲であれば特に制限されるものではないが、一般に20〜40℃、好ましくは35〜40℃の範囲内の温度が好適である。【0055】また、培養時間はグルコース等の炭水化物源の消費やL(+)−乳酸の生産の時間的推移、リアクターの種類などにより総合的に判断すればよい。特に本発明のリゾプス・エスピーMK96−1156は、 L(+)−乳酸産生活性に優れるため、例えば回分式で実施する場合には、20〜100時間、より好ましくは20〜80時間、更には30〜50時間でも十分なL(+)−乳酸量を得ることができる。その一方、当該L(+)−乳酸菌は連続によってもL(+)−乳酸産生活の低下が少ないため、回分式、半回分式での再使用や連続的使用も可能である。連続使用する場合には、当該菌のL(+)−乳酸産生活性を経時的に調べ、適宜培養時間を調整することができる。【0056】また、培地のpHは4〜8の範囲が好ましく、より好適には5〜7の範囲である。この範囲での産生に優れるからである。この目的のため培地を滅菌する前に炭酸カルシウムを添加するかあるいは培養中にpHセンサーおよびpHコントローラーを用いて水酸化ナトリウム水溶液またはアンモニア水又はアンモニアガスなどを添加し、自動的に適切なpHの値に維持することが好ましい。特に、本発明ではアンモニア水又はアンモニアガスの導入によりpHを調整することが好ましい。この理由は以下の通りである。【0057】即ち、大規模に生産を行う場合には、L(+)−乳酸発酵では炭酸カルシウムを使用することが一般的であるが、培養液から遊離のL(+)−乳酸を分離精製する際に非常に困難をもたらす場合が多い。炭酸カルシウムを中和剤として用いた場合、生成したL(+)−乳酸がL(+)−乳酸カルシウムの形態をなすため、遊離のL(+)−乳酸を生産する場合には硫酸を添加して難溶性の硫酸カルシウムを生成させ分離する必要が生じる。従って、大量生産により大量に生じた硫酸カルシウムを処理するため、膨大な労力と経費とが必要となる。【0058】一方、アンモニア水またはアンモニアガスを中和剤として用いた場合には、生成したL(+)−乳酸はアンモニウム塩の形態をとる。このL(+)−乳酸アンモニウム塩は、バイポーラ電気透析により遊離のL(+)−乳酸を生ずると共に、同時に発生したアンモニアを回収して発酵に再利用することもできる。また、ブタノール等のアルコールを添加してL(+)−乳酸アンモニウムを直接エステル化し、L(+)−乳酸エステルを得ると同時にアンモニアを回収し発酵に再利用することもできる。更に、計算量の硫酸を添加して肥料として有用な硫酸アンモニウムを生成させ、L(+)−乳酸を抽出などで分離する方法等が可能であり、アンモニア処理に多様性がある。【0059】アンモニアは一般に微生物の増殖に対して阻害的に働き、アンモニアの濃度が一定以上であれば殆ど増殖が阻害される。しかし本発明で使用するリゾプス属に属する乳酸産生菌は、アンモニア耐性を有するL(+)−乳酸産生菌であり、アンモニア存在下においても優れたL(+)−乳酸産生能を発揮する。従って、これによりL(+)−乳酸の収率よく生産しうると共に、生じた塩類の処理、 L(+)−乳酸の分離精製等を含むその後の処理を容易にすることができるのである。【0060】【実施例】以下、実施例をもって本発明を説明するが、本発明はこれらに制限されるものではない。なお、「%」は「重量%」を示す。【0061】実施例1;L(+)−乳酸の回分発酵生産(通気撹拌型リアクター)リゾプス・エスピーMK96−1156を表1に示す斜面培養寒天培地で培養し、次いで胞子を採取した。胞子濃度が106 個/mlとなるように表9に示す前培養培地100mlを入れた500ml容三角フラスコに接種した。これを30℃でロータリーシェイカー(回転数170rpm、回転半径2cm)で15時間培養した。【0062】次いで、表9に示す生産培地1.5リットルを入れた2.5リットルジャーファーメンター(丸菱バイオエンジ(株)、東京)に、前記前培養液を培地量の10%(v/v)となるように添加した。これを、回転数300rpm、通気量0.5vvm、培養温度35℃で通気撹拌培養した。培養開始直後から、pHを5.5に維持するために10%のアンモニア水をpHコントローラーにより添加した。発酵経過を表10に示す。【0063】前培養液を接種した後24時間位から糖の活発な消費が始まり、これと平行してL(+)−乳酸の生産が始まった。72時間でグルコースが完全に消失し、76g/リットル(終了時培地量1.64リットル)のL(+)−乳酸が生産された。この時のL(+)−乳酸の生産量は25g/リットル/日であり、L(+)−乳酸の生成収率は仕込みグルコース基準で69.2%を越える。これはアンモニア中和によるL(+)−乳酸の生産として極めて高収率であった。【0064】【表9】【0065】【表10】【0066】比較例1リゾプス・エスピーMK96−1156菌株の親株であるリゾプス・エスピーMK96菌株を用いて、実施例1と同じ培養条件でジャーファーメンターを用いて培養を行った。その結果を表11に示した。【0067】表11からもわかるように、リゾプス・エスピーMK96菌株は、培養開始後の72時間後においてもL(+)−乳酸の蓄積量はリゾプス・エスピーMK96−1156の50%以下であり、30g/リットル、最終液量1.54リットルのL(+)−乳酸を蓄積したのみであった。仕込みグルコース基準の生産収率は、72時間後に25.7%であった。この比較例からみてもリゾプス・エスピーMK96−1156菌株は、L(+)−乳酸の生産菌として非常に優れていることがわかった。【0068】【表11】【0069】比較例2リゾプス・エスピーMK96−1156に代えてリゾプス・オリゼ NRRL395を使用した以外は、実施例1と同様に操作した。147時間時の最終液量は1.50リットルであり、収率は44.2%であった。結果を表12に示す。【0070】表12から、従来菌株であるリゾプス・オリゼ NRRL395と比較すると、本リゾプス・エスピーMK96−1156菌株によるL(+)−乳酸産生は極めて収率の高い乳酸産生菌であることが判明した。【0071】【表12】【0072】実施例2;L(+)−乳酸の気泡塔型リアクターでの回分生産リゾプス・エスピーMK96−1156を表1に示す組成の斜面培養寒天培地で培養し、次いで胞子を採取した。胞子濃度が106 個/mlとなるように表9に示す前培養培地100mlを入れた500ml容三角フラスコに接種した。これを30℃でロータリーシェイカー(回転数170rpm、回転半径2cm)で15時間培養した。【0073】次いで、表9で示す生産培地1.5リットルを入れた2.5リットル気泡塔型リアクターに前記前培養液を培地量の10%(v/v)となるように添加した。通気量は、1.0vvm、培養温度35℃で通気のみの培養を行った。培養開始直後から、pH5.5に維持するため10%のアンモニア水をpHコントローラーにより添加した。表13に培養経過を示す。【0074】表13からもわかるように、実施例1で示した通気撹拌型リアクターに比較してL(+)−乳酸の生産速度が大きく、50時間では81g/リットル(終了時培地量1.72リットル)を蓄積し、仕込みグルコースあたりの生産収率は、77.4%であった。発酵槽の製作コスト、ランニングコスト並びにスケールアップの容易さ等を総合すると気泡塔型リアクターが優れた。【0075】【表13】【0076】実施例3;L(+)−乳酸の反復回分発酵生産(気泡塔型リアクター)実施例2と同じ方法で、100リットル容の大型気泡塔型リアクターによる反復回分培養を行った。1回目の生産培地仕込量は65リットルとした。なおpH調整は28%のアンモニア水で行った。表14に示すように培養開始後2日目に炭素源であるグルコースが完全に消失していることを確認してから、通気を停止し、生成した菌糸塊をリアクター底部に沈降させた。次いで上澄を抜き出し、菌糸塊を含む沈澱部を約10リットルとした。新たに滅菌した生産培地を入れて全量を65リットルとし再び通気を行って培養を再開した。この反復回分培養を最初を含めて9回繰り返した。【0077】表14からわかるように1回分の回分培養に必要な日数は回を経るに従って短くなり、2回目から6回目までは1.5日間、7回目以降は2日で培養が終了した。結局15.5日間で、9回の反復回分培養を行った。通常の回分培養では、発酵に2.5日、リアクターの洗浄その他に0.5日かかるため、15.5日では、約5回の回分生産しか行えない。これに比し、本発明にかかるリゾプス・エスピーMK96−1156菌株は9回の反復回分培養にも優れた生産性を示し、これにより既存の方法に比較して概ね1.5倍の乳酸生産性を示し、極めて高収率であった。なお、本反復回分培養では前培養は最初の一回だけよいため、従来の回分培養において毎回前培養液を調製しなければならないことと比較すると、労務コストを大幅に減少させることができた。【0078】【表14】【0079】実施例4;L(+)−乳酸の気泡塔型リアクターでの回分生産生産培地として、実施例2で使用した組成に更にコーンミール1g/リットルを添加した以外は、全く同様に操作して気泡塔型リアクターによる発酵を行った。36時間時の最終液量は1.65リットルであり、収率は81.6%であった。結果を表15に示す。生産速度が大幅に改善されると共に高い生産収率を得ることができた。【0080】【表15】【0081】【発明の効果】本発明によれば、アンモニア耐性を有するL(+)−乳酸産生菌が提供される。かかる菌株を使用して好気的培養により、収率よくL(+)−乳酸を生産することができる。また、アンモニアを培地中に添加することにより、中和剤又は生成物阻害を除去することができ、しかもアンモニアによるL(+)−乳酸産生能の低下を生ずることなく収率よくL(+)−乳酸を生産することができる。当該菌株の反復回分発酵は、前培養が1回ですむため、生産時間が短縮されしかも収率が高い。【0082】上記L(+)−乳酸の製造方法により、比較的安価にL(+)−乳酸を得ることができるため、食品添加物として清酒、清涼飲料、漬物、醤油、製パン、ビールなどの製造に使用され、また、工業用として皮革、繊維、プラスチックなどの製造に幅広く利用できる。 リゾプス・エスピーMK96−1156(Rhizopus sp.MK96−1156)(受託番号:FERM BP−6777)菌株。 請求項1記載の菌株を好気的に培養して、培養液のpHの調整がアンモニアの添加によることを特徴とするL(+)−乳酸を生産する方法。 前記好気的培養が、空気または酸素の導入により連続的に、新たな培養液毎に回分式に、または新たな培養液を供給し半回分式に培養することを特徴とする請求項2記載のL(+)−乳酸を生産する方法。 前記好気的培養が回分式に行われる場合において、前培養することなく菌体を再使用し回分式に培養することを特徴とする請求項3記載のL(+)−乳酸を生産する方法。 前記好気的培養が、通気撹拌型バイオリアクターまたは気泡塔型バイオリアクターにより行われることを特徴とする請求項2〜4のいずれか1項記載のL(+)−乳酸を生産する方法。


ページのトップへ戻る

生命科学データベース横断検索へ戻る